Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.05800
Cited By
SHED: A Newton-type algorithm for federated learning based on incremental Hessian eigenvector sharing
11 February 2022
Nicolò Dal Fabbro
S. Dey
M. Rossi
Luca Schenato
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SHED: A Newton-type algorithm for federated learning based on incremental Hessian eigenvector sharing"
6 / 6 papers shown
Title
Federated Cubic Regularized Newton Learning with Sparsification-amplified Differential Privacy
Wei Huo
Changxin Liu
Kemi Ding
Karl H. Johansson
Ling Shi
FedML
35
0
0
08 Aug 2024
VREM-FL: Mobility-Aware Computation-Scheduling Co-Design for Vehicular Federated Learning
Luca Ballotta
Nicolò Dal Fabbro
Giovanni Perin
Luca Schenato
Michele Rossi
Giuseppe Piro
30
1
0
30 Nov 2023
Q-SHED: Distributed Optimization at the Edge via Hessian Eigenvectors Quantization
Nicolò Dal Fabbro
M. Rossi
Luca Schenato
S. Dey
16
0
0
18 May 2023
FedLess: Secure and Scalable Federated Learning Using Serverless Computing
Andreas Grafberger
Mohak Chadha
Anshul Jindal
Jianfeng Gu
Michael Gerndt
36
49
0
05 Nov 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,698
0
18 Mar 2020
1