Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.05963
Cited By
Private Adaptive Optimization with Side Information
12 February 2022
Tian Li
Manzil Zaheer
Sashank J. Reddi
Virginia Smith
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Private Adaptive Optimization with Side Information"
28 / 28 papers shown
Title
Differentially Private Federated Learning With Time-Adaptive Privacy Spending
Shahrzad Kiani
Nupur Kulkarni
Adam Dziedzic
S. Draper
Franziska Boenisch
FedML
Presented at
ResearchTrend Connect | FedML
on
28 Mar 2025
145
0
0
25 Feb 2025
Enhancing DP-SGD through Non-monotonous Adaptive Scaling Gradient Weight
Tao Huang
Qingyu Huang
Xin Shi
Jiayang Meng
Guolong Zheng
Xu Yang
Xun Yi
26
0
0
05 Nov 2024
Communication-Efficient and Privacy-Preserving Decentralized Meta-Learning
Hansi Yang
James T. Kwok
56
0
0
19 Jun 2024
Delving into Differentially Private Transformer
Youlong Ding
Xueyang Wu
Yining Meng
Yonggang Luo
Hao Wang
Weike Pan
29
5
0
28 May 2024
Provable Privacy with Non-Private Pre-Processing
Yaxian Hu
Amartya Sanyal
Bernhard Schölkopf
24
2
0
19 Mar 2024
On the Convergence of Differentially-Private Fine-tuning: To Linearly Probe or to Fully Fine-tune?
Shuqi Ke
Charlie Hou
Giulia Fanti
Sewoong Oh
34
4
0
29 Feb 2024
AIJack: Let's Hijack AI! Security and Privacy Risk Simulator for Machine Learning
Hideaki Takahashi
SILM
25
2
0
29 Dec 2023
Private Learning with Public Features
Walid Krichene
Nicolas Mayoraz
Steffen Rendle
Shuang Song
Abhradeep Thakurta
Li Zhang
21
6
0
24 Oct 2023
Coupling public and private gradient provably helps optimization
Ruixuan Liu
Zhiqi Bu
Yu-Xiang Wang
Sheng Zha
George Karypis
18
2
0
02 Oct 2023
Private Matrix Factorization with Public Item Features
Mihaela Curmei
Walid Krichene
Li Zhang
Mukund Sundararajan
26
3
0
17 Sep 2023
Client-Level Differential Privacy via Adaptive Intermediary in Federated Medical Imaging
Meirui Jiang
Yuan Zhong
Anjie Le
Xiaoxiao Li
Qianming Dou
FedML
37
5
0
24 Jul 2023
Differentially Private Image Classification by Learning Priors from Random Processes
Xinyu Tang
Ashwinee Panda
Vikash Sehwag
Prateek Mittal
23
20
0
08 Jun 2023
PILLAR: How to make semi-private learning more effective
Francesco Pinto
Yaxian Hu
Fanny Yang
Amartya Sanyal
38
11
0
06 Jun 2023
Selective Pre-training for Private Fine-tuning
Da Yu
Sivakanth Gopi
Janardhan Kulkarni
Zi-Han Lin
Saurabh Naik
Tomasz Religa
Jian Yin
Huishuai Zhang
30
19
0
23 May 2023
Can Public Large Language Models Help Private Cross-device Federated Learning?
Boxin Wang
Yibo Zhang
Yuan Cao
Bo-wen Li
H. B. McMahan
Sewoong Oh
Zheng Xu
Manzil Zaheer
FedML
21
37
0
20 May 2023
Efficient Federated Learning with Enhanced Privacy via Lottery Ticket Pruning in Edge Computing
Yi Shi
Kang Wei
Li Shen
Jun Li
Xueqian Wang
Bo Yuan
Song Guo
33
5
0
02 May 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
167
0
01 Mar 2023
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
15
18
0
22 Jan 2023
Differentially Private Learning with Per-Sample Adaptive Clipping
Tianyu Xia
Shuheng Shen
Su Yao
Xinyi Fu
Ke Xu
Xiaolong Xu
Xingbo Fu
30
15
0
01 Dec 2022
Differentially Private Adaptive Optimization with Delayed Preconditioners
Tian Li
Manzil Zaheer
Ziyu Liu
Sashank J. Reddi
H. B. McMahan
Virginia Smith
37
10
0
01 Dec 2022
Learning-Augmented Private Algorithms for Multiple Quantile Release
M. Khodak
Kareem Amin
Travis Dick
Sergei Vassilvitskii
FedML
29
4
0
20 Oct 2022
Differentially Private Online-to-Batch for Smooth Losses
Qinzi Zhang
Hoang Tran
Ashok Cutkosky
FedML
38
4
0
12 Oct 2022
FLAIR: Federated Learning Annotated Image Repository
Congzheng Song
Filip Granqvist
Kunal Talwar
FedML
16
27
0
18 Jul 2022
Membership Inference Attack Using Self Influence Functions
Gilad Cohen
Raja Giryes
TDI
25
12
0
26 May 2022
Mixed Federated Learning: Joint Decentralized and Centralized Learning
S. Augenstein
Andrew Straiton Hard
Lin Ning
K. Singhal
Satyen Kale
Kurt Partridge
Rajiv Mathews
FedML
17
8
0
26 May 2022
Public Data-Assisted Mirror Descent for Private Model Training
Ehsan Amid
Arun Ganesh
Rajiv Mathews
Swaroop Indra Ramaswamy
Shuang Song
Thomas Steinke
Vinith M. Suriyakumar
Om Thakkar
Abhradeep Thakurta
8
48
0
01 Dec 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
173
411
0
14 Jul 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
180
154
0
26 Feb 2021
1