ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.06443
8
6

Learning Reward Models for Cooperative Trajectory Planning with Inverse Reinforcement Learning and Monte Carlo Tree Search

14 February 2022
Karl Kurzer
M. Bitzer
J. Marius Zöllner
ArXivPDFHTML
Abstract

Cooperative trajectory planning methods for automated vehicles can solve traffic scenarios that require a high degree of cooperation between traffic participants. However, for cooperative systems to integrate into human-centered traffic, the automated systems must behave human-like so that humans can anticipate the system's decisions. While Reinforcement Learning has made remarkable progress in solving the decision-making part, it is non-trivial to parameterize a reward model that yields predictable actions. This work employs feature-based Maximum Entropy Inverse Reinforcement Learning combined with Monte Carlo Tree Search to learn reward models that maximize the likelihood of recorded multi-agent cooperative expert trajectories. The evaluation demonstrates that the approach can recover a reasonable reward model that mimics the expert and performs similarly to a manually tuned baseline reward model.

View on arXiv
Comments on this paper