Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.06988
Cited By
Learned Turbulence Modelling with Differentiable Fluid Solvers: Physics-based Loss-functions and Optimisation Horizons
14 February 2022
Bjorn List
Li-Wei Chen
Nils Thuerey
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learned Turbulence Modelling with Differentiable Fluid Solvers: Physics-based Loss-functions and Optimisation Horizons"
8 / 8 papers shown
Title
A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations
Sheel Nidhan
Haoliang Jiang
Lalit Ghule
C. Umphrey
Rishikesh Ranade
Jay Pathak
AI4CE
34
0
0
26 Aug 2024
Beyond Closure Models: Learning Chaotic-Systems via Physics-Informed Neural Operators
Chuwei Wang
Julius Berner
Zongyi Li
Di Zhou
Jiayun Wang
Jane Bae
Anima Anandkumar
AI4CE
28
1
0
09 Aug 2024
A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty
A. Agrawal
P. Koutsourelakis
AI4CE
11
15
0
05 Jul 2023
Algorithmically Designed Artificial Neural Networks (ADANNs): Higher order deep operator learning for parametric partial differential equations
Arnulf Jentzen
Adrian Riekert
Philippe von Wurstemberger
19
1
0
07 Feb 2023
Solving Inverse Physics Problems with Score Matching
Benjamin Holzschuh
S. Vegetti
Nils Thuerey
DiffM
11
8
0
24 Jan 2023
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
27
47
0
14 Nov 2022
Physics-based Deep Learning
Nils Thuerey
Philipp Holl
P. Holl
Patrick Schnell
Felix Trost
Kiwon Um
P. Schnell
F. Trost
PINN
AI4CE
48
92
0
11 Sep 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,281
0
18 Oct 2020
1