ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.07462
  4. Cited By
Vau da muntanialas: Energy-efficient multi-die scalable acceleration of
  RNN inference

Vau da muntanialas: Energy-efficient multi-die scalable acceleration of RNN inference

14 February 2022
G. Paulin
Francesco Conti
Lukas Cavigelli
Luca Benini
ArXivPDFHTML

Papers citing "Vau da muntanialas: Energy-efficient multi-die scalable acceleration of RNN inference"

2 / 2 papers shown
Title
MINIMALIST: switched-capacitor circuits for efficient in-memory computation of gated recurrent units
MINIMALIST: switched-capacitor circuits for efficient in-memory computation of gated recurrent units
Sebastian Billaudelle
Laura Kriener
Filippo Moro
Tristan Torchet
Melika Payvand
23
0
0
13 May 2025
Incremental Network Quantization: Towards Lossless CNNs with
  Low-Precision Weights
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
302
1,046
0
10 Feb 2017
1