ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.07962
  4. Cited By
Revisiting Parameter-Efficient Tuning: Are We Really There Yet?
v1v2 (latest)

Revisiting Parameter-Efficient Tuning: Are We Really There Yet?

Conference on Empirical Methods in Natural Language Processing (EMNLP), 2022
16 February 2022
Guanzheng Chen
Fangyu Liu
Zaiqiao Meng
Shangsong Liang
ArXiv (abs)PDFHTML

Papers citing "Revisiting Parameter-Efficient Tuning: Are We Really There Yet?"

16 / 66 papers shown
Title
A Comprehensive Analysis of Adapter Efficiency
A Comprehensive Analysis of Adapter Efficiency
Nandini Mundra
Sumanth Doddapaneni
Mary Dabre
Anoop Kunchukuttan
Ratish Puduppully
Mitesh M. Khapra
176
16
0
12 May 2023
Empirical Analysis of the Strengths and Weaknesses of PEFT Techniques
  for LLMs
Empirical Analysis of the Strengths and Weaknesses of PEFT Techniques for LLMs
George Pu
Anirudh Jain
Jihan Yin
Russell Kaplan
161
48
0
28 Apr 2023
PEFT-Ref: A Modular Reference Architecture and Typology for
  Parameter-Efficient Finetuning Techniques
PEFT-Ref: A Modular Reference Architecture and Typology for Parameter-Efficient Finetuning Techniques
Mohammed Sabry
Anya Belz
259
9
0
24 Apr 2023
Dynamic Prompting: A Unified Framework for Prompt Tuning
Dynamic Prompting: A Unified Framework for Prompt Tuning
Xianjun Yang
Wei Cheng
Xujiang Zhao
Wenchao Yu
Linda R. Petzold
Haifeng Chen
VLM
298
20
0
06 Mar 2023
MixPHM: Redundancy-Aware Parameter-Efficient Tuning for Low-Resource
  Visual Question Answering
MixPHM: Redundancy-Aware Parameter-Efficient Tuning for Low-Resource Visual Question AnsweringComputer Vision and Pattern Recognition (CVPR), 2023
Jingjing Jiang
Nanning Zheng
MoE
279
11
0
02 Mar 2023
Multimodality Representation Learning: A Survey on Evolution,
  Pretraining and Its Applications
Multimodality Representation Learning: A Survey on Evolution, Pretraining and Its Applications
Muhammad Arslan Manzoor
S. Albarri
Ziting Xian
Zaiqiao Meng
Preslav Nakov
Shangsong Liang
AI4TS
298
50
0
01 Feb 2023
AutoPEFT: Automatic Configuration Search for Parameter-Efficient
  Fine-Tuning
AutoPEFT: Automatic Configuration Search for Parameter-Efficient Fine-TuningTransactions of the Association for Computational Linguistics (TACL), 2023
Han Zhou
Xingchen Wan
Ivan Vulić
Anna Korhonen
206
50
0
28 Jan 2023
When Federated Learning Meets Pre-trained Language Models'
  Parameter-Efficient Tuning Methods
When Federated Learning Meets Pre-trained Language Models' Parameter-Efficient Tuning MethodsAnnual Meeting of the Association for Computational Linguistics (ACL), 2022
Zhuo Zhang
Yuanhang Yang
Yong Dai
Zhuang Li
Zenglin Xu
FedML
360
111
0
20 Dec 2022
Parameter-Efficient Finetuning of Transformers for Source Code
Parameter-Efficient Finetuning of Transformers for Source Code
Shamil Ayupov
Nadezhda Chirkova
72
22
0
12 Dec 2022
ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning
ColD Fusion: Collaborative Descent for Distributed Multitask FinetuningAnnual Meeting of the Association for Computational Linguistics (ACL), 2022
Shachar Don-Yehiya
Elad Venezian
Colin Raffel
Noam Slonim
Yoav Katz
Leshem Choshen
MoMe
220
60
0
02 Dec 2022
On the Effectiveness of Parameter-Efficient Fine-Tuning
On the Effectiveness of Parameter-Efficient Fine-TuningAAAI Conference on Artificial Intelligence (AAAI), 2022
Z. Fu
Haoran Yang
Anthony Man-Cho So
Wai Lam
Lidong Bing
Nigel Collier
168
201
0
28 Nov 2022
Where to start? Analyzing the potential value of intermediate models
Where to start? Analyzing the potential value of intermediate modelsConference on Empirical Methods in Natural Language Processing (EMNLP), 2022
Leshem Choshen
Elad Venezian
Shachar Don-Yehiya
Noam Slonim
Yoav Katz
MoMe
359
28
0
31 Oct 2022
Parameter-Efficient Tuning Makes a Good Classification Head
Parameter-Efficient Tuning Makes a Good Classification HeadConference on Empirical Methods in Natural Language Processing (EMNLP), 2022
Zhuoyi Yang
Ming Ding
Yanhui Guo
Qingsong Lv
Jie Tang
VLM
238
16
0
30 Oct 2022
Sparse Structure Search for Parameter-Efficient Tuning
Sparse Structure Search for Parameter-Efficient Tuning
Shengding Hu
Zhen Zhang
Ning Ding
Yadao Wang
Yasheng Wang
Zhiyuan Liu
Maosong Sun
133
19
0
15 Jun 2022
Neural Prompt Search
Neural Prompt SearchIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Yuanhan Zhang
Kaiyang Zhou
Ziwei Liu
VPVLMVLM
339
170
0
09 Jun 2022
When does Parameter-Efficient Transfer Learning Work for Machine
  Translation?
When does Parameter-Efficient Transfer Learning Work for Machine Translation?Conference on Empirical Methods in Natural Language Processing (EMNLP), 2022
Ahmet Üstün
Asa Cooper Stickland
160
8
0
23 May 2022
Previous
12