Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.08132
Cited By
Prospect Pruning: Finding Trainable Weights at Initialization using Meta-Gradients
16 February 2022
Milad Alizadeh
Shyam A. Tailor
L. Zintgraf
Joost R. van Amersfoort
Sebastian Farquhar
Nicholas D. Lane
Y. Gal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Prospect Pruning: Finding Trainable Weights at Initialization using Meta-Gradients"
8 / 8 papers shown
Title
Rapid Deployment of DNNs for Edge Computing via Structured Pruning at Initialization
Bailey J. Eccles
Leon Wong
Blesson Varghese
33
2
0
22 Apr 2024
Magnitude Attention-based Dynamic Pruning
Jihye Back
Namhyuk Ahn
Jang-Hyun Kim
25
2
0
08 Jun 2023
NTK-SAP: Improving neural network pruning by aligning training dynamics
Yite Wang
Dawei Li
Ruoyu Sun
28
19
0
06 Apr 2023
Balanced Training for Sparse GANs
Yite Wang
Jing Wu
N. Hovakimyan
Ruoyu Sun
32
9
0
28 Feb 2023
FedCliP: Federated Learning with Client Pruning
Beibei Li
Zerui Shao
Ao Liu
Peiran Wang
FedML
37
1
0
17 Jan 2023
Rare Gems: Finding Lottery Tickets at Initialization
Kartik K. Sreenivasan
Jy-yong Sohn
Liu Yang
Matthew Grinde
Alliot Nagle
Hongyi Wang
Eric P. Xing
Kangwook Lee
Dimitris Papailiopoulos
16
42
0
24 Feb 2022
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
222
382
0
05 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
314
11,681
0
09 Mar 2017
1