ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.08132
  4. Cited By
Prospect Pruning: Finding Trainable Weights at Initialization using
  Meta-Gradients

Prospect Pruning: Finding Trainable Weights at Initialization using Meta-Gradients

16 February 2022
Milad Alizadeh
Shyam A. Tailor
L. Zintgraf
Joost R. van Amersfoort
Sebastian Farquhar
Nicholas D. Lane
Y. Gal
ArXivPDFHTML

Papers citing "Prospect Pruning: Finding Trainable Weights at Initialization using Meta-Gradients"

8 / 8 papers shown
Title
Rapid Deployment of DNNs for Edge Computing via Structured Pruning at
  Initialization
Rapid Deployment of DNNs for Edge Computing via Structured Pruning at Initialization
Bailey J. Eccles
Leon Wong
Blesson Varghese
33
2
0
22 Apr 2024
Magnitude Attention-based Dynamic Pruning
Magnitude Attention-based Dynamic Pruning
Jihye Back
Namhyuk Ahn
Jang-Hyun Kim
25
2
0
08 Jun 2023
NTK-SAP: Improving neural network pruning by aligning training dynamics
NTK-SAP: Improving neural network pruning by aligning training dynamics
Yite Wang
Dawei Li
Ruoyu Sun
28
19
0
06 Apr 2023
Balanced Training for Sparse GANs
Balanced Training for Sparse GANs
Yite Wang
Jing Wu
N. Hovakimyan
Ruoyu Sun
32
9
0
28 Feb 2023
FedCliP: Federated Learning with Client Pruning
FedCliP: Federated Learning with Client Pruning
Beibei Li
Zerui Shao
Ao Liu
Peiran Wang
FedML
37
1
0
17 Jan 2023
Rare Gems: Finding Lottery Tickets at Initialization
Rare Gems: Finding Lottery Tickets at Initialization
Kartik K. Sreenivasan
Jy-yong Sohn
Liu Yang
Matthew Grinde
Alliot Nagle
Hongyi Wang
Eric P. Xing
Kangwook Lee
Dimitris Papailiopoulos
16
42
0
24 Feb 2022
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
222
382
0
05 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
314
11,681
0
09 Mar 2017
1