Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.08312
Cited By
Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams
16 February 2022
S. Denisov
H. B. McMahan
J. Rush
Adam D. Smith
Abhradeep Thakurta
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive Streams"
46 / 46 papers shown
Title
An Inversion Theorem for Buffered Linear Toeplitz (BLT) Matrices and Applications to Streaming Differential Privacy
H. B. McMahan
Krishna Pillutla
31
0
0
30 Apr 2025
Binned Group Algebra Factorization for Differentially Private Continual Counting
Monika Henzinger
Nikita P. Kalinin
Jalaj Upadhyay
29
1
0
06 Apr 2025
Investigating Large Language Models in Diagnosing Students' Cognitive Skills in Math Problem-solving
Hyoungwook Jin
Yoonsu Kim
Dongyun Jung
Seungju Kim
Kiyoon Choi
J. Son
Juho Kim
LRM
62
2
0
01 Apr 2025
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
62
0
0
16 Mar 2025
Differentially Private Online Federated Learning with Correlated Noise
Jiaojiao Zhang
Linglingzhi Zhu
Mikael Johansson
FedML
49
1
0
10 Jan 2025
Data value estimation on private gradients
Zijian Zhou
Xinyi Xu
Daniela Rus
Bryan Kian Hsiang Low
74
0
0
22 Dec 2024
DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning using Packed Secret Sharing
Alexander Bienstock
Ujjwal Kumar
Antigoni Polychroniadou
FedML
34
0
0
21 Oct 2024
Near Exact Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Saminul Haque
Thomas Steinke
Abhradeep Thakurta
36
5
0
08 Oct 2024
DOPPLER: Differentially Private Optimizers with Low-pass Filter for Privacy Noise Reduction
Xinwei Zhang
Zhiqi Bu
Mingyi Hong
Meisam Razaviyayn
16
4
0
24 Aug 2024
A Hassle-free Algorithm for Private Learning in Practice: Don't Use Tree Aggregation, Use BLTs
H. B. McMahan
Zheng Xu
Yanxiang Zhang
FedML
37
5
0
16 Aug 2024
Fine-Tuning Large Language Models with User-Level Differential Privacy
Zachary Charles
Arun Ganesh
Ryan McKenna
H. B. McMahan
Nicole Mitchell
Krishna Pillutla
Keith Rush
31
11
0
10 Jul 2024
Continual Counting with Gradual Privacy Expiration
Joel Daniel Andersson
Monika Henzinger
Rasmus Pagh
Teresa Anna Steiner
Jalaj Upadhyay
43
1
0
06 Jun 2024
Click Without Compromise: Online Advertising Measurement via Per User Differential Privacy
Yingtai Xiao
Jian Du
Shikun Zhang
Qiang Yan
Danfeng Zhang
Daniel Kifer
Daniel Kifer
45
2
0
04 Jun 2024
Banded Square Root Matrix Factorization for Differentially Private Model Training
Nikita Kalinin
Christoph H. Lampert
26
5
0
22 May 2024
Adaptive Data Analysis for Growing Data
Neil G. Marchant
Benjamin I. P. Rubinstein
30
0
0
22 May 2024
Improved Communication-Privacy Trade-offs in
L
2
L_2
L
2
Mean Estimation under Streaming Differential Privacy
Wei-Ning Chen
Berivan Isik
Peter Kairouz
Albert No
Sewoong Oh
Zheng Xu
47
3
0
02 May 2024
Teach LLMs to Phish: Stealing Private Information from Language Models
Ashwinee Panda
Christopher A. Choquette-Choo
Zhengming Zhang
Yaoqing Yang
Prateek Mittal
PILM
32
20
0
01 Mar 2024
Auditing Private Prediction
Karan Chadha
Matthew Jagielski
Nicolas Papernot
Christopher A. Choquette-Choo
Milad Nasr
30
4
0
14 Feb 2024
Momentum Approximation in Asynchronous Private Federated Learning
Tao Yu
Congzheng Song
Jianyu Wang
Mona Chitnis
FedML
35
1
0
14 Feb 2024
Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Thomas Steinke
Abhradeep Thakurta
25
9
0
24 Oct 2023
Correlated Noise Provably Beats Independent Noise for Differentially Private Learning
Christopher A. Choquette-Choo
Krishnamurthy Dvijotham
Krishna Pillutla
Arun Ganesh
Thomas Steinke
Abhradeep Thakurta
22
13
0
10 Oct 2023
Towards Federated Foundation Models: Scalable Dataset Pipelines for Group-Structured Learning
Zachary B. Charles
Nicole Mitchell
Krishna Pillutla
Michael Reneer
Zachary Garrett
FedML
AI4CE
28
28
0
18 Jul 2023
A Unifying Framework for Differentially Private Sums under Continual Observation
Monika Henzinger
Jalaj Upadhyay
Sarvagya Upadhyay
FedML
24
14
0
18 Jul 2023
Differentially Private Histogram, Predecessor, and Set Cardinality under Continual Observation
Monika Henzinger
A. Sricharan
Teresa Anna Steiner
23
3
0
17 Jun 2023
A Smooth Binary Mechanism for Efficient Private Continual Observation
Joel Daniel Andersson
Rasmus Pagh
13
11
0
16 Jun 2023
PLAN: Variance-Aware Private Mean Estimation
Martin Aumüller
C. Lebeda
Boel Nelson
Rasmus Pagh
FedML
26
4
0
14 Jun 2023
(Amplified) Banded Matrix Factorization: A unified approach to private training
Christopher A. Choquette-Choo
Arun Ganesh
Ryan McKenna
H. B. McMahan
Keith Rush
Abhradeep Thakurta
Zheng Xu
FedML
23
35
0
13 Jun 2023
Continual Release of Differentially Private Synthetic Data from Longitudinal Data Collections
Mark Bun
Marco Gaboardi
Marcel Neunhoeffer
Wanrong Zhang
SyDa
19
7
0
13 Jun 2023
Counting Distinct Elements in the Turnstile Model with Differential Privacy under Continual Observation
Palak Jain
Iden Kalemaj
Sofya Raskhodnikova
Satchit Sivakumar
Adam D. Smith
25
11
0
11 Jun 2023
Differentially Private Stream Processing at Scale
Bing Zhang
Vadym Doroshenko
Peter Kairouz
Thomas Steinke
Abhradeep Thakurta
Zi-Tang Ma
Eidan Cohen
Himani Apte
Jodi Spacek
13
7
0
31 Mar 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
167
0
01 Mar 2023
Private Statistical Estimation of Many Quantiles
Clément Lalanne
Aurélien Garivier
Rémi Gribonval
16
5
0
14 Feb 2023
One-shot Empirical Privacy Estimation for Federated Learning
Galen Andrew
Peter Kairouz
Sewoong Oh
Alina Oprea
H. B. McMahan
Vinith M. Suriyakumar
FedML
19
32
0
06 Feb 2023
Gradient Descent with Linearly Correlated Noise: Theory and Applications to Differential Privacy
Anastasia Koloskova
Ryan McKenna
Zachary B. Charles
Keith Rush
Brendan McMahan
27
8
0
02 Feb 2023
Concurrent Shuffle Differential Privacy Under Continual Observation
J. Tenenbaum
Haim Kaplan
Yishay Mansour
Uri Stemmer
FedML
28
2
0
29 Jan 2023
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
15
18
0
22 Jan 2023
Differentially Private Adaptive Optimization with Delayed Preconditioners
Tian Li
Manzil Zaheer
Ziyu Liu
Sashank J. Reddi
H. B. McMahan
Virginia Smith
37
10
0
01 Dec 2022
Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning
Christopher A. Choquette-Choo
H. B. McMahan
Keith Rush
Abhradeep Thakurta
24
42
0
12 Nov 2022
Almost Tight Error Bounds on Differentially Private Continual Counting
Monika Henzinger
Jalaj Upadhyay
Sarvagya Upadhyay
FedML
11
37
0
09 Nov 2022
Recycling Scraps: Improving Private Learning by Leveraging Intermediate Checkpoints
Virat Shejwalkar
Arun Ganesh
Rajiv Mathews
Om Thakkar
Abhradeep Thakurta
15
8
0
04 Oct 2022
Composition of Differential Privacy & Privacy Amplification by Subsampling
Thomas Steinke
56
49
0
02 Oct 2022
Constant matters: Fine-grained Complexity of Differentially Private Continual Observation
Hendrik Fichtenberger
Monika Henzinger
Jalaj Upadhyay
29
20
0
23 Feb 2022
The Price of Differential Privacy under Continual Observation
Palak Jain
Sofya Raskhodnikova
Satchit Sivakumar
Adam D. Smith
29
51
0
01 Dec 2021
HDMM: Optimizing error of high-dimensional statistical queries under differential privacy
Ryan McKenna
G. Miklau
Michael Hay
Ashwin Machanavajjhala
13
20
0
23 Jun 2021
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
180
154
0
26 Feb 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
281
1,812
0
14 Dec 2020
1