ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.09346
  4. Cited By
Improving Molecular Contrastive Learning via Faulty Negative Mitigation
  and Decomposed Fragment Contrast

Improving Molecular Contrastive Learning via Faulty Negative Mitigation and Decomposed Fragment Contrast

18 February 2022
Yuyang Wang
Rishikesh Magar
Chen Liang
A. Farimani
ArXivPDFHTML

Papers citing "Improving Molecular Contrastive Learning via Faulty Negative Mitigation and Decomposed Fragment Contrast"

16 / 16 papers shown
Title
NaFM: Pre-training a Foundation Model for Small-Molecule Natural Products
NaFM: Pre-training a Foundation Model for Small-Molecule Natural Products
Yuheng Ding
Yusong Wang
Bo Qiang
Jie Yu
Qi Li
Yiran Zhou
Zhenmin Liu
61
0
0
22 Mar 2025
Strategies for Pretraining Neural Operators
Strategies for Pretraining Neural Operators
Anthony Y. Zhou
Cooper Lorsung
AmirPouya Hemmasian
Amir Barati Farimani
AI4CE
34
4
0
12 Jun 2024
Improving Self-supervised Molecular Representation Learning using
  Persistent Homology
Improving Self-supervised Molecular Representation Learning using Persistent Homology
Yuankai Luo
Lei Shi
Veronika Thost
SSL
8
8
0
29 Nov 2023
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property
  Prediction with 3D Information
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information
Taojie Kuang
Yiming Ren
Zhixiang Ren
6
7
0
28 Sep 2023
Large-scale Pretraining Improves Sample Efficiency of Active Learning
  based Molecule Virtual Screening
Large-scale Pretraining Improves Sample Efficiency of Active Learning based Molecule Virtual Screening
Zhonglin Cao
Simone Sciabola
Ye Wang
19
1
0
20 Sep 2023
Materials Informatics Transformer: A Language Model for Interpretable
  Materials Properties Prediction
Materials Informatics Transformer: A Language Model for Interpretable Materials Properties Prediction
Hongshuo Huang
Rishikesh Magar
Chang Xu
A. Farimani
AI4CE
19
4
0
30 Aug 2023
Fractional Denoising for 3D Molecular Pre-training
Fractional Denoising for 3D Molecular Pre-training
Shi Feng
Yuyan Ni
Yanyan Lan
Zhiming Ma
Wei-Ying Ma
DiffM
AI4CE
30
25
0
20 Jul 2023
BARTSmiles: Generative Masked Language Models for Molecular
  Representations
BARTSmiles: Generative Masked Language Models for Molecular Representations
Gayane Chilingaryan
Hovhannes Tamoyan
Ani Tevosyan
N. Babayan
L. Khondkaryan
Karen Hambardzumyan
Zaven Navoyan
Hrant Khachatrian
Armen Aghajanyan
SSL
16
25
0
29 Nov 2022
A 3D-Shape Similarity-based Contrastive Approach to Molecular
  Representation Learning
A 3D-Shape Similarity-based Contrastive Approach to Molecular Representation Learning
Austin O. Atsango
N. Diamant
Ziqing Lu
Tommaso Biancalani
Gabriele Scalia
Kangway V Chuang
14
2
0
03 Nov 2022
MOFormer: Self-Supervised Transformer model for Metal-Organic Framework
  Property Prediction
MOFormer: Self-Supervised Transformer model for Metal-Organic Framework Property Prediction
Zhonglin Cao
Rishikesh Magar
Yuyang Wang
A. Farimani
AI4CE
18
86
0
25 Oct 2022
Keeping it Simple: Language Models can learn Complex Molecular
  Distributions
Keeping it Simple: Language Models can learn Complex Molecular Distributions
Daniel Flam-Shepherd
Kevin Zhu
A. Aspuru‐Guzik
122
142
0
06 Dec 2021
Pre-training Molecular Graph Representation with 3D Geometry
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
106
294
0
07 Oct 2021
Large-Scale Chemical Language Representations Capture Molecular
  Structure and Properties
Large-Scale Chemical Language Representations Capture Molecular Structure and Properties
Jerret Ross
Brian M. Belgodere
Vijil Chenthamarakshan
Inkit Padhi
Youssef Mroueh
Payel Das
AI4CE
11
265
0
17 Jun 2021
Deep Reinforcement Learning Optimizes Graphene Nanopores for Efficient
  Desalination
Deep Reinforcement Learning Optimizes Graphene Nanopores for Efficient Desalination
Yuyang Wang
Zhonglin Cao
Amir Barati Farimani
AI4CE
25
57
0
19 Jan 2021
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
152
1,748
0
02 Mar 2017
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
228
3,202
0
24 Nov 2016
1