Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.10446
Cited By
EINNs: Epidemiologically-informed Neural Networks
21 February 2022
Alexander Rodríguez
Jiaming Cui
Naren Ramakrishnan
B. Adhikari
B. Prakash
Re-assign community
ArXiv
PDF
HTML
Papers citing
"EINNs: Epidemiologically-informed Neural Networks"
8 / 8 papers shown
Title
Physics-informed deep learning for infectious disease forecasting
Y. Qian
Éric Marty
Avranil Basu
Avranil Basu
Eamon B. O'Dea
Xianqiao Wang
Spencer Fox
Pejman Rohani
John M. Drake
He Li
PINN
AI4CE
76
2
0
16 Jan 2025
Utilising physics-guided deep learning to overcome data scarcity
Jinshuai Bai
Laith Alzubaidi
Qingxia Wang
E. Kuhl
Bennamoun
Yuantong T. Gu
PINN
AI4CE
14
3
0
24 Nov 2022
Differentiable Agent-based Epidemiology
Ayush Chopra
Alexander Rodríguez
J. Subramanian
Arnau Quera-Bofarull
Balaji Krishnamurthy
B. Prakash
Ramesh Raskar
AI4CE
16
19
0
20 Jul 2022
Deep diffusion-based forecasting of COVID-19 by incorporating network-level mobility information
Padmaksha Roy
Shailik Sarkar
Subhodip Biswas
Fanglan Chen
Zhiqian Chen
Naren Ramakrishnan
Chang-Tien Lu
DiffM
19
8
0
09 Nov 2021
CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting
Harshavardhan Kamarthi
Lingkai Kong
Alexander Rodríguez
Chao Zhang
B. Prakash
AI4TS
33
17
0
15 Sep 2021
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs
Nils Wandel
Michael Weinmann
Michael Neidlin
Reinhard Klein
AI4CE
50
58
0
15 Sep 2021
Physics-based Deep Learning
Nils Thuerey
Philipp Holl
P. Holl
Patrick Schnell
Felix Trost
Kiwon Um
P. Schnell
F. Trost
PINN
AI4CE
48
89
0
11 Sep 2021
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
755
0
13 Mar 2020
1