Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.11099
Cited By
Rotationally Equivariant Super-Resolution of Velocity Fields in Two-Dimensional Fluids Using Convolutional Neural Networks
22 February 2022
Y. Yasuda
R. Onishi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Rotationally Equivariant Super-Resolution of Velocity Fields in Two-Dimensional Fluids Using Convolutional Neural Networks"
5 / 5 papers shown
Title
Applying Machine Learning to Study Fluid Mechanics
Steven L. Brunton
PINN
AI4CE
39
95
0
05 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,106
0
27 Apr 2021
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
187
141
0
01 May 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
102
127
0
11 Mar 2020
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
1