ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.11099
  4. Cited By
Rotationally Equivariant Super-Resolution of Velocity Fields in
  Two-Dimensional Fluids Using Convolutional Neural Networks

Rotationally Equivariant Super-Resolution of Velocity Fields in Two-Dimensional Fluids Using Convolutional Neural Networks

22 February 2022
Y. Yasuda
R. Onishi
ArXivPDFHTML

Papers citing "Rotationally Equivariant Super-Resolution of Velocity Fields in Two-Dimensional Fluids Using Convolutional Neural Networks"

5 / 5 papers shown
Title
Applying Machine Learning to Study Fluid Mechanics
Applying Machine Learning to Study Fluid Mechanics
Steven L. Brunton
PINN
AI4CE
39
95
0
05 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,106
0
27 Apr 2021
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time
  Super-Resolution Framework
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
187
141
0
01 May 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
102
127
0
11 Mar 2020
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
1