ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.12848
  4. Cited By
A Robust Multi-Objective Bayesian Optimization Framework Considering
  Input Uncertainty

A Robust Multi-Objective Bayesian Optimization Framework Considering Input Uncertainty

25 February 2022
Jixiang Qing
Ivo Couckuyt
T. Dhaene
ArXivPDFHTML

Papers citing "A Robust Multi-Objective Bayesian Optimization Framework Considering Input Uncertainty"

2 / 2 papers shown
Title
Trieste: Efficiently Exploring The Depths of Black-box Functions with
  TensorFlow
Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow
Victor Picheny
Joel Berkeley
Henry B. Moss
Hrvoje Stojić
Uri Granta
...
Sergio Pascual-Diaz
Stratis Markou
Jixiang Qing
Nasrulloh Loka
Ivo Couckuyt
20
17
0
16 Feb 2023
Noisy-Input Entropy Search for Efficient Robust Bayesian Optimization
Noisy-Input Entropy Search for Efficient Robust Bayesian Optimization
Lukas P. Frohlich
Edgar D. Klenske
Julia Vinogradska
Christian Daniel
M. Zeilinger
42
36
0
07 Feb 2020
1