
Title |
|---|
![]() SoK: Privacy-Preserving Data SynthesisIEEE Symposium on Security and Privacy (IEEE S&P), 2023 |
![]() Private, fair and accurate: Training large-scale, privacy-preserving AI
models in medical imagingCommunications Medicine (Commun Med), 2023 Soroosh Tayebi Arasteh Alexander Ziller Christiane Kuhl Marcus R. Makowski S. Nebelung R. Braren Daniel Rueckert Daniel Truhn Georgios Kaissis |
![]() A Linear Reconstruction Approach for Attribute Inference Attacks against
Synthetic DataUSENIX Security Symposium (USENIX Security), 2023 |
![]() On the Risks of Collecting Multidimensional Data Under Local
Differential PrivacyProceedings of the VLDB Endowment (PVLDB), 2022 |