ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.13470
  4. Cited By
Attacks on Deidentification's Defenses

Attacks on Deidentification's Defenses

USENIX Security Symposium (USENIX Security), 2022
27 February 2022
A. Cohen
    AAML
ArXiv (abs)PDFHTML

Papers citing "Attacks on Deidentification's Defenses"

10 / 10 papers shown
Title
How to Get Actual Privacy and Utility from Privacy Models: the k-Anonymity and Differential Privacy Families
How to Get Actual Privacy and Utility from Privacy Models: the k-Anonymity and Differential Privacy Families
J. Domingo-Ferrer
David Sánchez
131
1
0
13 Oct 2025
Exposing Privacy Risks in Anonymizing Clinical Data: Combinatorial Refinement Attacks on k-Anonymity Without Auxiliary Information
Exposing Privacy Risks in Anonymizing Clinical Data: Combinatorial Refinement Attacks on k-Anonymity Without Auxiliary Information
Somiya Chhillar
Mary K. Righi
Rebecca E. Sutter
Evgenios M. Kornaropoulos
76
0
0
03 Sep 2025
Reconciling AI Performance and Data Reconstruction Resilience for
  Medical Imaging
Reconciling AI Performance and Data Reconstruction Resilience for Medical Imaging
Alexander Ziller
Tamara T. Mueller
Simon Stieger
Leonhard F. Feiner
Johannes Brandt
R. Braren
Daniel Rueckert
Georgios Kaissis
160
1
0
05 Dec 2023
An In-Depth Examination of Requirements for Disclosure Risk Assessment
An In-Depth Examination of Requirements for Disclosure Risk Assessment
Ron S. Jarmin
John M. Abowd
Robert Ashmead
Ryan Cumings-Menon
N. Goldschlag
...
Jerome P. Reiter
Rolando A. Rodríguez
Ian M. Schmutte
V. Velkoff
Pavel I Zhuravlev
190
10
0
13 Oct 2023
Publishing Wikipedia usage data with strong privacy guarantees
Publishing Wikipedia usage data with strong privacy guarantees
Temilola Adeleye
Skye Berghel
Damien Desfontaines
Michael Hay
Isaac Johnson
...
Thomas Magerlein
G. Modena
David Pujol
Daniel Simmons-Marengo
H. Triedman
76
14
0
30 Aug 2023
SoK: Privacy-Preserving Data Synthesis
SoK: Privacy-Preserving Data SynthesisIEEE Symposium on Security and Privacy (IEEE S&P), 2023
Yuzheng Hu
Fan Wu
Yue Liu
Yunhui Long
Gonzalo Munilla Garrido
Chang Ge
Bolin Ding
David A. Forsyth
Yue Liu
Basel Alomair
282
48
0
05 Jul 2023
Synthetic data generation for a longitudinal cohort study -- Evaluation,
  method extension and reproduction of published data analysis results
Synthetic data generation for a longitudinal cohort study -- Evaluation, method extension and reproduction of published data analysis resultsScientific Reports (Sci Rep), 2023
Lisa Kühnel
Julian Schneider
Ines Perrar
Tim Adams
F. Prasser
U. Nöthlings
Holger Fröhlich
Juliane Fluck
168
15
0
12 May 2023
Private, fair and accurate: Training large-scale, privacy-preserving AI
  models in medical imaging
Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imagingCommunications Medicine (Commun Med), 2023
Soroosh Tayebi Arasteh
Alexander Ziller
Christiane Kuhl
Marcus R. Makowski
S. Nebelung
R. Braren
Daniel Rueckert
Daniel Truhn
Georgios Kaissis
MedIm
433
32
0
03 Feb 2023
A Linear Reconstruction Approach for Attribute Inference Attacks against
  Synthetic Data
A Linear Reconstruction Approach for Attribute Inference Attacks against Synthetic DataUSENIX Security Symposium (USENIX Security), 2023
Meenatchi Sundaram Muthu Selva Annamalai
Andrea Gadotti
Luc Rocher
MIACV
203
28
0
24 Jan 2023
On the Risks of Collecting Multidimensional Data Under Local
  Differential Privacy
On the Risks of Collecting Multidimensional Data Under Local Differential PrivacyProceedings of the VLDB Endowment (PVLDB), 2022
Héber H. Arcolezi
Sébastien Gambs
Jean-François Couchot
C. Palamidessi
226
17
0
04 Sep 2022
1