ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.13715
  4. Cited By
Fast and Compute-efficient Sampling-based Local Exploration Planning via
  Distribution Learning

Fast and Compute-efficient Sampling-based Local Exploration Planning via Distribution Learning

28 February 2022
L. Schmid
Chao Ni
Yuliang Zhong
Roland Siegwart
Olov Andersson
    OffRL
ArXivPDFHTML

Papers citing "Fast and Compute-efficient Sampling-based Local Exploration Planning via Distribution Learning"

4 / 4 papers shown
Title
Information Gain Is Not All You Need
Information Gain Is Not All You Need
Ludvig Ericson
José Pedro
Patric Jensfelt
28
0
0
28 Mar 2025
Beyond the Frontier: Predicting Unseen Walls from Occupancy Grids by
  Learning from Floor Plans
Beyond the Frontier: Predicting Unseen Walls from Occupancy Grids by Learning from Floor Plans
Ludvig Ericson
Patric Jensfelt
39
7
0
13 Jun 2024
Panoptic Multi-TSDFs: a Flexible Representation for Online
  Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency
Panoptic Multi-TSDFs: a Flexible Representation for Online Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency
L. Schmid
J. Delmerico
Johannes L. Schonberger
Juan I. Nieto
Marc Pollefeys
Roland Siegwart
César Cadena
122
58
0
21 Sep 2021
A Unified Approach for Autonomous Volumetric Exploration of Large Scale
  Environments under Severe Odometry Drift
A Unified Approach for Autonomous Volumetric Exploration of Large Scale Environments under Severe Odometry Drift
L. Schmid
Victor Reijgwart
Lionel Ott
Juan I. Nieto
Roland Siegwart
César Cadena
97
33
0
19 Oct 2020
1