ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.02291
17
18

Freeform Body Motion Generation from Speech

4 March 2022
Jing-Fen Xu
Wei Zhang
Yalong Bai
Qi-Biao Sun
Tao Mei
    SLR
ArXivPDFHTML
Abstract

People naturally conduct spontaneous body motions to enhance their speeches while giving talks. Body motion generation from speech is inherently difficult due to the non-deterministic mapping from speech to body motions. Most existing works map speech to motion in a deterministic way by conditioning on certain styles, leading to sub-optimal results. Motivated by studies in linguistics, we decompose the co-speech motion into two complementary parts: pose modes and rhythmic dynamics. Accordingly, we introduce a novel freeform motion generation model (FreeMo) by equipping a two-stream architecture, i.e., a pose mode branch for primary posture generation, and a rhythmic motion branch for rhythmic dynamics synthesis. On one hand, diverse pose modes are generated by conditional sampling in a latent space, guided by speech semantics. On the other hand, rhythmic dynamics are synced with the speech prosody. Extensive experiments demonstrate the superior performance against several baselines, in terms of motion diversity, quality and syncing with speech. Code and pre-trained models will be publicly available through https://github.com/TheTempAccount/Co-Speech-Motion-Generation.

View on arXiv
Comments on this paper