Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.02549
Cited By
Structured Pruning is All You Need for Pruning CNNs at Initialization
4 March 2022
Yaohui Cai
Weizhe Hua
Hongzheng Chen
G. E. Suh
Christopher De Sa
Zhiru Zhang
CVBM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Structured Pruning is All You Need for Pruning CNNs at Initialization"
8 / 8 papers shown
Title
Rapid Deployment of DNNs for Edge Computing via Structured Pruning at Initialization
Bailey J. Eccles
Leon Wong
Blesson Varghese
33
2
0
22 Apr 2024
DNNShifter: An Efficient DNN Pruning System for Edge Computing
Bailey J. Eccles
Philip Rodgers
Peter Kilpatrick
I. Spence
Blesson Varghese
32
15
0
13 Sep 2023
Towards Optimal Compression: Joint Pruning and Quantization
Ben Zandonati
Glenn Bucagu
Adrian Alan Pol
M. Pierini
Olya Sirkin
Tal Kopetz
MQ
17
2
0
15 Feb 2023
AcceRL: Policy Acceleration Framework for Deep Reinforcement Learning
Hongjie Zhang
OffRL
13
0
0
28 Nov 2022
Symmetry Structured Convolutional Neural Networks
K. D. G. Maduranga
Vasily Zadorozhnyy
Qiang Ye
14
3
0
03 Mar 2022
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
183
1,027
0
06 Mar 2020
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
222
382
0
05 Mar 2020
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,549
0
17 Apr 2017
1