ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.03183
20
4

Find a Way Forward: a Language-Guided Semantic Map Navigator

7 March 2022
Zehao Wang
Mingxiao Li
Minye Wu
Marie-Francine Moens
Tinne Tuytelaars
    LM&Ro
ArXivPDFHTML
Abstract

In this paper, we introduce the map-language navigation task where an agent executes natural language instructions and moves to the target position based only on a given 3D semantic map. To tackle the task, we design the instruction-aware Path Proposal and Discrimination model (iPPD). Our approach leverages map information to provide instruction-aware path proposals, i.e., it selects all potential instruction-aligned candidate paths to reduce the solution space. Next, to represent the map observations along a path for a better modality alignment, a novel Path Feature Encoding scheme tailored for semantic maps is proposed. An attention-based Language Driven Discriminator is designed to evaluate path candidates and determine the best path as the final result. Our method can naturally avoid error accumulation compared with single-step greedy decision methods. Comparing to a single-step imitation learning approach, iPPD has performance gains above 17% on navigation success and 0.18 on path matching measurement nDTW in challenging unseen environments.

View on arXiv
Comments on this paper