Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.03304
Cited By
Regularising for invariance to data augmentation improves supervised learning
7 March 2022
Aleksander Botev
Matthias Bauer
Soham De
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Regularising for invariance to data augmentation improves supervised learning"
9 / 9 papers shown
Title
From One to the Power of Many: Invariance to Multi-LiDAR Perception from Single-Sensor Datasets
Marc Uecker
J. M. Zöllner
20
0
0
27 Sep 2024
Generating Physical Dynamics under Priors
Zihan Zhou
Xiaoxue Wang
Tianshu Yu
DiffM
AI4CE
48
0
0
01 Sep 2024
Understanding the Detrimental Class-level Effects of Data Augmentation
Polina Kirichenko
Mark Ibrahim
Randall Balestriero
Diane Bouchacourt
Ramakrishna Vedantam
Hamed Firooz
Andrew Gordon Wilson
24
12
0
07 Dec 2023
SequenceMatch: Revisiting the design of weak-strong augmentations for Semi-supervised learning
Khanh-Binh Nguyen
8
3
0
24 Oct 2023
Contextual Reliability: When Different Features Matter in Different Contexts
Gaurav R. Ghosal
Amrith Rajagopal Setlur
Daniel S. Brown
Anca Dragan
Aditi Raghunathan
17
1
0
19 Jul 2023
Subspace-Configurable Networks
Dong Wang
O. Saukh
Xiaoxi He
Lothar Thiele
OOD
22
0
0
22 May 2023
Image augmentation with conformal mappings for a convolutional neural network
O. Rainio
Mohamed M. S. Nasser
M. Vuorinen
R. Klén
11
3
0
10 Dec 2022
A Comprehensive Survey of Data Augmentation in Visual Reinforcement Learning
Guozheng Ma
Zhen Wang
Zhecheng Yuan
Xueqian Wang
Bo Yuan
Dacheng Tao
OffRL
23
25
0
10 Oct 2022
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
220
510
0
11 Feb 2021
1