ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.04095
  4. Cited By
Contrastive Enhancement Using Latent Prototype for Few-Shot Segmentation

Contrastive Enhancement Using Latent Prototype for Few-Shot Segmentation

8 March 2022
Xiaoyu Zhao
Xiaoqian Chen
Zhiqiang Gong
Wen Yao
Yunyang Zhang
Xiaohu Zheng
    VLM
ArXivPDFHTML

Papers citing "Contrastive Enhancement Using Latent Prototype for Few-Shot Segmentation"

4 / 4 papers shown
Title
Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight
  Transformer
Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer
Zhihe Lu
Sen He
Xiatian Zhu
Li Zhang
Yi-Zhe Song
Tao Xiang
ViT
171
173
0
06 Aug 2021
Learning Meta-class Memory for Few-Shot Semantic Segmentation
Learning Meta-class Memory for Few-Shot Semantic Segmentation
Zhonghua Wu
Xiangxi Shi
Guosheng lin
Jianfei Cai
VLM
70
108
0
06 Aug 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
484
11,715
0
09 Mar 2017
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
451
15,652
0
02 Nov 2015
1