Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.04163
Cited By
v1
v2 (latest)
Localization Schemes: A Framework for Proving Mixing Bounds for Markov Chains
8 March 2022
Yuansi Chen
Ronen Eldan
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Localization Schemes: A Framework for Proving Mixing Bounds for Markov Chains"
24 / 24 papers shown
Title
Joint stochastic localization and applications
Tom Alberts
Yiming Xu
Qiang Ye
39
0
0
19 May 2025
Diffusion Models are Secretly Exchangeable: Parallelizing DDPMs via Autospeculation
Hengyuan Hu
Aniket Das
Dorsa Sadigh
Nima Anari
DiffM
70
0
0
06 May 2025
Hessian stability and convergence rates for entropic and Sinkhorn potentials via semiconcavity
Giacomo Greco
Luca Tamanini
62
1
0
15 Apr 2025
Approximating the total variation distance between spin systems
Weiming Feng
Hongyang Liu
Minji Yang
116
0
0
08 Feb 2025
Information-Theoretic Proofs for Diffusion Sampling
Galen Reeves
H. Pfister
DiffM
150
0
0
04 Feb 2025
A semiconcavity approach to stability of entropic plans and exponential convergence of Sinkhorn's algorithm
Alberto Chiarini
Giovanni Conforti
Giacomo Greco
Luca Tamanini
140
4
0
12 Dec 2024
Sampling from the Random Linear Model via Stochastic Localization Up to the AMP Threshold
Han Cui
Zhiyuan Yu
Jingbo Liu
64
1
0
15 Jul 2024
Posterior Sampling with Denoising Oracles via Tilted Transport
Joan Bruna
Jiequn Han
DiffM
MedIm
75
7
0
30 Jun 2024
Hierarchic Flows to Estimate and Sample High-dimensional Probabilities
Etienne Lempereur
Stéphane Mallat
78
1
0
06 May 2024
An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization
Minshuo Chen
Song Mei
Jianqing Fan
Mengdi Wang
VLM
MedIm
DiffM
124
59
0
11 Apr 2024
Zeroth-Order Sampling Methods for Non-Log-Concave Distributions: Alleviating Metastability by Denoising Diffusion
Ye He
Kevin Rojas
Molei Tao
DiffM
116
11
0
27 Feb 2024
Stochastic Localization via Iterative Posterior Sampling
Louis Grenioux
Maxence Noble
Marylou Gabrié
Alain Durmus
DiffM
90
16
0
16 Feb 2024
Learning Hard-Constrained Models with One Sample
Andreas Galanis
Alkis Kalavasis
Anthimos Vardis Kandiros
102
2
0
06 Nov 2023
Sampling with flows, diffusion and autoregressive neural networks: A spin-glass perspective
Davide Ghio
Yatin Dandi
Florent Krzakala
Lenka Zdeborová
DiffM
62
29
0
27 Aug 2023
Nearly
d
d
d
-Linear Convergence Bounds for Diffusion Models via Stochastic Localization
Joe Benton
Valentin De Bortoli
Arnaud Doucet
George Deligiannidis
DiffM
99
117
0
07 Aug 2023
The probability flow ODE is provably fast
Sitan Chen
Sinho Chewi
Holden Lee
Yuanzhi Li
Jianfeng Lu
Adil Salim
DiffM
102
91
0
19 May 2023
Sampling, Diffusions, and Stochastic Localization
Andrea Montanari
DiffM
55
34
0
18 May 2023
Query lower bounds for log-concave sampling
Sinho Chewi
Jaume de Dios Pont
Jerry Li
Chen Lu
Shyam Narayanan
95
8
0
05 Apr 2023
Faster high-accuracy log-concave sampling via algorithmic warm starts
Jason M. Altschuler
Sinho Chewi
109
36
0
20 Feb 2023
Algorithmic Aspects of the Log-Laplace Transform and a Non-Euclidean Proximal Sampler
Sivakanth Gopi
Y. Lee
Daogao Liu
Ruoqi Shen
Kevin Tian
93
7
0
13 Feb 2023
Hit-and-run mixing via localization schemes
Yuansi Chen
Ronen Eldan
50
5
0
01 Dec 2022
Spectral Telescope: Convergence Rate Bounds for Random-Scan Gibbs Samplers Based on a Hierarchical Structure
Qian Qin
Guanyang Wang
26
6
0
24 Aug 2022
Optimal Sublinear Sampling of Spanning Trees and Determinantal Point Processes via Average-Case Entropic Independence
Nima Anari
Yang P. Liu
T. Vuong
54
18
0
06 Apr 2022
Improved analysis for a proximal algorithm for sampling
Yongxin Chen
Sinho Chewi
Adil Salim
Andre Wibisono
105
58
0
13 Feb 2022
1