ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.04735
  4. Cited By
A Survey on Reinforcement Learning Methods in Character Animation

A Survey on Reinforcement Learning Methods in Character Animation

7 March 2022
Ariel Kwiatkowski
Eduardo Alvarado
Vicky Kalogeiton
C. Karen Liu
Julien Pettré
M. van de Panne
Marie-Paule Cani
    AI4CE
ArXivPDFHTML

Papers citing "A Survey on Reinforcement Learning Methods in Character Animation"

7 / 7 papers shown
Title
MoConVQ: Unified Physics-Based Motion Control via Scalable Discrete
  Representations
MoConVQ: Unified Physics-Based Motion Control via Scalable Discrete Representations
Heyuan Yao
Zhenhua Song
Yuyang Zhou
Tenglong Ao
Baoquan Chen
Libin Liu
13
38
0
16 Oct 2023
AdaptNet: Policy Adaptation for Physics-Based Character Control
AdaptNet: Policy Adaptation for Physics-Based Character Control
Pei Xu
Kaixiang Xie
Sheldon Andrews
P. Kry
Michael Neff
Morgan McGuire
Ioannis Karamouzas
Victor Zordan
TTA
37
16
0
30 Sep 2023
Hierarchical Planning and Control for Box Loco-Manipulation
Hierarchical Planning and Control for Box Loco-Manipulation
Zhaoming Xie
Jo-Han Tseng
Sebastian Starke
M. van de Panne
C. Karen Liu
22
29
0
15 Jun 2023
Generating Upper-Body Motion for Real-Time Characters Making their Way
  through Dynamic Environments
Generating Upper-Body Motion for Real-Time Characters Making their Way through Dynamic Environments
Eduardo Alvarado
D. Rohmer
Marie-Paule Cani
AI4CE
11
8
0
21 Sep 2022
Discovering Diverse Athletic Jumping Strategies
Discovering Diverse Athletic Jumping Strategies
Zhiqi Yin
Zeshi Yang
M. van de Panne
KangKang Yin
32
46
0
02 May 2021
ALLSTEPS: Curriculum-driven Learning of Stepping Stone Skills
ALLSTEPS: Curriculum-driven Learning of Stepping Stone Skills
Zhaoming Xie
Hung Yu Ling
N. Kim
M. van de Panne
112
105
0
09 May 2020
Learning to Run challenge: Synthesizing physiologically accurate motion
  using deep reinforcement learning
Learning to Run challenge: Synthesizing physiologically accurate motion using deep reinforcement learning
L. Kidzinski
Sharada Mohanty
Carmichael F. Ong
Jennifer Hicks
Sean F. Carroll
Sergey Levine
M. Salathé
Scott L. Delp
19
60
0
31 Mar 2018
1