ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.05025
  4. Cited By
Power-of-Two Quantization for Low Bitwidth and Hardware Compliant Neural
  Networks

Power-of-Two Quantization for Low Bitwidth and Hardware Compliant Neural Networks

9 March 2022
Dominika Przewlocka-Rus
Syed Shakib Sarwar
H. Sumbul
Yuecheng Li
B. D. Salvo
    MQ
ArXivPDFHTML

Papers citing "Power-of-Two Quantization for Low Bitwidth and Hardware Compliant Neural Networks"

2 / 2 papers shown
Title
Super Efficient Neural Network for Compression Artifacts Reduction and
  Super Resolution
Super Efficient Neural Network for Compression Artifacts Reduction and Super Resolution
Wen Ma
Qiuwen Lou
Arman Kazemi
Julian Faraone
Tariq Afzal
SupR
17
0
0
26 Jan 2024
ShiftAddNet: A Hardware-Inspired Deep Network
ShiftAddNet: A Hardware-Inspired Deep Network
Haoran You
Xiaohan Chen
Yongan Zhang
Chaojian Li
Sicheng Li
Zihao Liu
Zhangyang Wang
Yingyan Lin
OOD
MQ
50
75
0
24 Oct 2020
1