ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.06153
  4. Cited By
Symmetry Group Equivariant Architectures for Physics

Symmetry Group Equivariant Architectures for Physics

11 March 2022
A. Bogatskiy
S. Ganguly
Thomas Kipf
Risi Kondor
David W. Miller
D. Murnane
Jan T. Offermann
M. Pettee
P. Shanahan
C. Shimmin
S. Thais
    AI4CE
ArXivPDFHTML

Papers citing "Symmetry Group Equivariant Architectures for Physics"

7 / 7 papers shown
Title
Oracle-Preserving Latent Flows
Oracle-Preserving Latent Flows
Alexander Roman
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
DRL
24
5
0
02 Feb 2023
Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
  from First Principles
Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras from First Principles
Roy T. Forestano
Konstantin T. Matchev
Katia Matcheva
Alexander Roman
Eyup B. Unlu
Sarunas Verner
AI4CE
28
21
0
13 Jan 2023
Equivariance with Learned Canonicalization Functions
Equivariance with Learned Canonicalization Functions
Sekouba Kaba
Arnab Kumar Mondal
Yan Zhang
Yoshua Bengio
Siamak Ravanbakhsh
30
61
0
11 Nov 2022
Theoretical Guarantees for Permutation-Equivariant Quantum Neural
  Networks
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
27
84
0
18 Oct 2022
Group-Invariant Quantum Machine Learning
Group-Invariant Quantum Machine Learning
Martín Larocca
F. Sauvage
Faris M. Sbahi
Guillaume Verdon
Patrick J. Coles
M. Cerezo
AI4CE
16
117
0
04 May 2022
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
192
1,232
0
08 Jan 2021
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,811
0
25 Nov 2016
1