ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.06823
  4. Cited By
SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image
  Labels for Quantitative Clinical Evaluation

SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation

14 March 2022
Arjun D Desai
Andrew M Schmidt
E. Rubin
Christopher M. Sandino
Marianne S. Black
Valentina Mazzoli
K. Stevens
R. Boutin
Christopher Ré
G. Gold
B. Hargreaves
Akshay S. Chaudhari
ArXiv (abs)PDFHTMLGithub (88★)

Papers citing "SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation"

36 / 36 papers shown
Title
Understanding Benefits and Pitfalls of Current Methods for the Segmentation of Undersampled MRI Data
Understanding Benefits and Pitfalls of Current Methods for the Segmentation of Undersampled MRI Data
Jan Nikolas Morshuis
Matthias Hein
Christian F. Baumgartner
36
0
0
26 Aug 2025
CUTE-MRI: Conformalized Uncertainty-based framework for Time-adaptivE MRI
CUTE-MRI: Conformalized Uncertainty-based framework for Time-adaptivE MRI
Paul Fischer
Jan Nikolas Morshuis
Thomas Kustner
Christian F. Baumgartner
80
0
0
20 Aug 2025
Large-scale Multi-sequence Pretraining for Generalizable MRI Analysis in Versatile Clinical Applications
Large-scale Multi-sequence Pretraining for Generalizable MRI Analysis in Versatile Clinical Applications
Zelin Qiu
Xi Wang
Zhuoyao Xie
Juan Zhou
Yu Wang
...
Neeraj Mahboobani
V. Vardhanabhuti
Xiaohui Duan
Yinghua Zhao
Hao Chen
69
0
0
10 Aug 2025
Restoration Score Distillation: From Corrupted Diffusion Pretraining to One-Step High-Quality Generation
Restoration Score Distillation: From Corrupted Diffusion Pretraining to One-Step High-Quality Generation
Yasi Zhang
Tianyu Chen
Zhendong Wang
Ying Nian Wu
Mingyuan Zhou
Oscar Leong
DiffM
113
1
0
19 May 2025
Efficient Noise Calculation in Deep Learning-based MRI Reconstructions
Efficient Noise Calculation in Deep Learning-based MRI Reconstructions
Onat Dalmaz
Arjun D Desai
Reinhard Heckel
Tolga Çukur
Akshay Chaudhari
B. Hargreaves
149
0
0
04 May 2025
Explicit and Implicit Representations in AI-based 3D Reconstruction for Radiology: A Systematic Review
Explicit and Implicit Representations in AI-based 3D Reconstruction for Radiology: A Systematic Review
Yuezhe Yang
Boyu Yang
Yaqian Wang
Yang He
Xingbo Dong
Zhe Jin
170
0
0
15 Apr 2025
nnInteractive: Redefining 3D Promptable Segmentation
Hyunjin Park
Maximilian R. Rokuss
Lars Krämer
Stefan Dinkelacker
Ashis Ravindran
...
Moritz Langenberg
Constantin Ulrich
Jonathan Deissler
R. Floca
Klaus H. Maier-Hein
252
27
0
11 Mar 2025
Boosting ViT-based MRI Reconstruction from the Perspectives of Frequency
  Modulation, Spatial Purification, and Scale Diversification
Boosting ViT-based MRI Reconstruction from the Perspectives of Frequency Modulation, Spatial Purification, and Scale DiversificationAAAI Conference on Artificial Intelligence (AAAI), 2024
Yucong Meng
Zhiwei Yang
Yonghong Shi
Zhijian Song
199
3
0
14 Dec 2024
A Survey on Diffusion Models for Inverse Problems
A Survey on Diffusion Models for Inverse Problems
Giannis Daras
Hyungjin Chung
Chieh-Hsin Lai
Yuki Mitsufuji
Jong Chul Ye
P. Milanfar
Alexandros G. Dimakis
M. Delbracio
MedIm
205
112
0
30 Sep 2024
MOST: MR reconstruction Optimization for multiple downStream Tasks via continual learning
MOST: MR reconstruction Optimization for multiple downStream Tasks via continual learningInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2024
Hwihun Jeong
S. Chun
Jongho Lee
180
3
0
16 Sep 2024
TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling
TC-KANRecon: High-Quality and Accelerated MRI Reconstruction via Adaptive KAN Mechanisms and Intelligent Feature Scaling
Ruiquan Ge
Xiao Yu
Yifei Chen
Fan Jia
Shenghao Zhu
...
Dong Zeng
Dong Zeng
Qiegen Liu
S. Niu
Shanzhou Niu
MedIm
172
5
0
11 Aug 2024
Segmentation-guided MRI reconstruction for meaningfully diverse
  reconstructions
Segmentation-guided MRI reconstruction for meaningfully diverse reconstructions
Jan Nikolas Morshuis
Matthias Hein
Christian F. Baumgartner
81
5
0
25 Jul 2024
INFusion: Diffusion Regularized Implicit Neural Representations for 2D
  and 3D accelerated MRI reconstruction
INFusion: Diffusion Regularized Implicit Neural Representations for 2D and 3D accelerated MRI reconstruction
Yamin Arefeen
Brett Levac
Zach Stoebner
Jonathan I. Tamir
MedIm
115
3
0
19 Jun 2024
Diffusion Models in Low-Level Vision: A Survey
Diffusion Models in Low-Level Vision: A Survey
Chunming He
Yuqi Shen
Chengyu Fang
Fengyang Xiao
Longxiang Tang
Yulun Zhang
W. Zuo
Zhenhua Guo
Xiu Li
VLMDiffMMedIm
377
78
0
17 Jun 2024
Enhancing Global Sensitivity and Uncertainty Quantification in Medical
  Image Reconstruction with Monte Carlo Arbitrary-Masked Mamba
Enhancing Global Sensitivity and Uncertainty Quantification in Medical Image Reconstruction with Monte Carlo Arbitrary-Masked Mamba
Jiahao Huang
Liutao Yang
Fanwen Wang
Yang Nan
Weiwen Wu
...
Kuangyu Shi
Angelica I. Aviles-Rivero
Carola-Bibiane Schönlieb
Daoqiang Zhang
Guang Yang
Mamba
113
0
0
27 May 2024
ATOMMIC: An Advanced Toolbox for Multitask Medical Imaging Consistency
  to facilitate Artificial Intelligence applications from acquisition to
  analysis in Magnetic Resonance Imaging
ATOMMIC: An Advanced Toolbox for Multitask Medical Imaging Consistency to facilitate Artificial Intelligence applications from acquisition to analysis in Magnetic Resonance Imaging
D. Karkalousos
Ivana Išgum
Henk A. Marquering
M. Caan
94
0
0
30 Apr 2024
Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted DataInternational Conference on Learning Representations (ICLR), 2024
Asad Aali
Giannis Daras
Brett Levac
Sidharth Kumar
Alexandros G. Dimakis
Jonathan I. Tamir
MedIm
233
24
0
13 Mar 2024
Robustness of Deep Learning for Accelerated MRI: Benefits of Diverse
  Training Data
Robustness of Deep Learning for Accelerated MRI: Benefits of Diverse Training DataInternational Conference on Machine Learning (ICML), 2023
Kang Lin
Reinhard Heckel
OOD
125
7
0
16 Dec 2023
A Survey of Emerging Applications of Diffusion Probabilistic Models in
  MRI
A Survey of Emerging Applications of Diffusion Probabilistic Models in MRI
Yuheng Fan
Hanxi Liao
Shiqi Huang
Yimin Luo
Huazhu Fu
Haikun Qi
MedIm
233
29
0
19 Nov 2023
K-band: Self-supervised MRI Reconstruction via Stochastic Gradient
  Descent over K-space Subsets
K-band: Self-supervised MRI Reconstruction via Stochastic Gradient Descent over K-space Subsets
Frédéric Wang
Han Qi
A. D. Goyeneche
Reinhard Heckel
Michael Lustig
Efrat Shimron
193
5
0
05 Aug 2023
Uncertainty Estimation and Propagation in Accelerated MRI Reconstruction
Uncertainty Estimation and Propagation in Accelerated MRI Reconstruction
Paul Fischer
Thomas Kustner
Christian F. Baumgartner
148
10
0
04 Aug 2023
CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI
  Reconstruction
CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI ReconstructionIEEE journal of biomedical and health informatics (IEEE JBHI), 2023
Liping Zhang
Xiaobo Li
Weitian Chen
163
6
0
20 Jun 2023
Learning Task-Specific Strategies for Accelerated MRI
Learning Task-Specific Strategies for Accelerated MRIIEEE Transactions on Computational Imaging (IEEE Trans. Comput. Imaging), 2023
Zihui Wu
Tianwei Yin
Yu Sun
R. Frost
A. Kouwe
Adrian Dalca
Katherine Bouman
126
7
0
25 Apr 2023
FastMRI Prostate: A Publicly Available, Biparametric MRI Dataset to
  Advance Machine Learning for Prostate Cancer Imaging
FastMRI Prostate: A Publicly Available, Biparametric MRI Dataset to Advance Machine Learning for Prostate Cancer Imaging
R. Tibrewala
T. Dutt
A. Tong
L. Ginocchio
M. Keerthivasan
...
S. Chopra
Yvonne W. Lui
D. Sodickson
H. Chandarana
Patricia M. Johnson
84
15
0
18 Apr 2023
DDM$^2$: Self-Supervised Diffusion MRI Denoising with Generative
  Diffusion Models
DDM2^22: Self-Supervised Diffusion MRI Denoising with Generative Diffusion ModelsInternational Conference on Learning Representations (ICLR), 2023
Tiange Xiang
Mahmut Yurt
Ali B. Syed
Kawin Setsompop
Akshay S. Chaudhari
MedImDiffM
167
64
0
06 Feb 2023
On the Feasibility of Machine Learning Augmented Magnetic Resonance for
  Point-of-Care Identification of Disease
On the Feasibility of Machine Learning Augmented Magnetic Resonance for Point-of-Care Identification of Disease
R. Singhal
Mukund Sudarshan
Anish Mahishi
S. Kaushik
L. Ginocchio
A. Tong
H. Chandarana
D. Sodickson
Rajesh Ranganath
S. Chopra
187
5
0
27 Jan 2023
Scale-Agnostic Super-Resolution in MRI using Feature-Based Coordinate
  Networks
Scale-Agnostic Super-Resolution in MRI using Feature-Based Coordinate Networks
Dave Van Veen
Rogier van der Sluijs
Batu Mehmet Ozturkler
Arjun D Desai
Christian Blüthgen
...
Gordon Wetzstein
David B. Lindell
S. Vasanawala
John M. Pauly
Akshay S. Chaudhari
SupRMedIm
143
7
0
17 Oct 2022
Data-Limited Tissue Segmentation using Inpainting-Based Self-Supervised
  Learning
Data-Limited Tissue Segmentation using Inpainting-Based Self-Supervised Learning
J. Dominic
Nandita Bhaskhar
Arjun D Desai
Andrew M Schmidt
E. Rubin
...
G. Gold
B. Hargreaves
L. Lenchik
R. Boutin
Akshay S. Chaudhari
97
0
0
14 Oct 2022
Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
  Methodologies from CNN, GAN to Attention and Transformers
Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and Methodologies from CNN, GAN to Attention and Transformers
Jiahao Huang
D. C. Marshall
Yang Nan
Huanjun Wu
Yinzhe Wu
...
Zidong Wang
Pietro Lio
Daniel Rueckert
Yonina C. Eldar
Guang Yang
OODMedIm
115
6
0
01 Apr 2022
Monarch: Expressive Structured Matrices for Efficient and Accurate
  Training
Monarch: Expressive Structured Matrices for Efficient and Accurate TrainingInternational Conference on Machine Learning (ICML), 2022
Tri Dao
Beidi Chen
N. Sohoni
Arjun D Desai
Michael Poli
Jessica Grogan
Alexander Liu
Aniruddh Rao
Atri Rudra
Christopher Ré
189
105
0
01 Apr 2022
Towards performant and reliable undersampled MR reconstruction via
  diffusion model sampling
Towards performant and reliable undersampled MR reconstruction via diffusion model samplingInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022
Cheng-Fang Peng
Pengfei Guo
S. Kevin Zhou
Vishal M. Patel
Ramalingam Chellappa
MedImDiffM
128
109
0
08 Mar 2022
Undersampled MRI Reconstruction with Side Information-Guided
  Normalisation
Undersampled MRI Reconstruction with Side Information-Guided NormalisationInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022
Xinwen Liu
Jing Wang
Cheng-Fang Peng
Shekhar S. Chandra
Yifan Zhang
S. Kevin Zhou
OOD
128
6
0
07 Mar 2022
Validation and Generalizability of Self-Supervised Image Reconstruction
  Methods for Undersampled MRI
Validation and Generalizability of Self-Supervised Image Reconstruction Methods for Undersampled MRIMachine Learning for Biomedical Imaging (MLBI), 2022
Thomas Yu
T. Hilbert
G. Piredda
Arun A. Joseph
G. Bonanno
...
P. Omoumi
Meritxell Bach Cuadra
Erick Jorge Canales-Rodríguez
Thomas Kober
Jean-Philippe Thiran
111
6
0
29 Jan 2022
ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer
ReconFormer: Accelerated MRI Reconstruction Using Recurrent TransformerIEEE Transactions on Medical Imaging (IEEE TMI), 2022
Pengfei Guo
Yiqun Mei
Jinyuan Zhou
Shanshan Jiang
Vishal M. Patel
ViTMedIm
162
88
0
23 Jan 2022
Subtle Data Crimes: Naively training machine learning algorithms could
  lead to overly-optimistic results
Subtle Data Crimes: Naively training machine learning algorithms could lead to overly-optimistic results
Efrat Shimron
Jonathan I. Tamir
Ke Wang
Michael Lustig
AI4CE
98
11
0
16 Sep 2021
The troublesome kernel -- On hallucinations, no free lunches and the
  accuracy-stability trade-off in inverse problems
The troublesome kernel -- On hallucinations, no free lunches and the accuracy-stability trade-off in inverse problemsSIAM Review (SIAM Rev.), 2020
N. Gottschling
Vegard Antun
A. Hansen
Ben Adcock
237
46
0
05 Jan 2020
1