ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.08958
  4. Cited By
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers

On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers

16 March 2022
Markus Kängsepp
Kaspar Valk
Meelis Kull
ArXivPDFHTML

Papers citing "On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers"

3 / 3 papers shown
Title
Can multiple-choice questions really be useful in detecting the
  abilities of LLMs?
Can multiple-choice questions really be useful in detecting the abilities of LLMs?
Wangyue Li
Liangzhi Li
Tong Xiang
Xiao Liu
Wei Deng
Noa Garcia
ELM
39
28
0
26 Mar 2024
Calibrated Perception Uncertainty Across Objects and Regions in
  Bird's-Eye-View
Calibrated Perception Uncertainty Across Objects and Regions in Bird's-Eye-View
Markus Kängsepp
Meelis Kull
UQCV
13
4
0
08 Nov 2022
Classifier Calibration: A survey on how to assess and improve predicted
  class probabilities
Classifier Calibration: A survey on how to assess and improve predicted class probabilities
Telmo de Menezes e Silva Filho
Hao Song
Miquel Perelló Nieto
Raúl Santos-Rodríguez
Meelis Kull
Peter A. Flach
16
74
0
20 Dec 2021
1