ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.09179
  4. Cited By
Maximum Likelihood Estimation in Gaussian Process Regression is
  Ill-Posed
v1v2v3 (latest)

Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed

17 March 2022
Toni Karvonen
Chris J. Oates
    GP
ArXiv (abs)PDFHTML

Papers citing "Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed"

5 / 5 papers shown
Title
Implementing Keyword Spotting on the MCUX947 Microcontroller with Integrated NPU
Petar Jakuš
Hrvoje Džapo
15
0
0
10 Jun 2025
Weighted Leave-One-Out Cross Validation
Weighted Leave-One-Out Cross Validation
L. Pronzato
M. Rendas
66
0
0
26 May 2025
Physics-based Reduced Order Modeling for Uncertainty Quantification of
  Guided Wave Propagation using Bayesian Optimization
Physics-based Reduced Order Modeling for Uncertainty Quantification of Guided Wave Propagation using Bayesian Optimization
G. Drakoulas
T. Gortsas
D. Polyzos
105
5
0
18 Jul 2023
HyperBO+: Pre-training a universal prior for Bayesian optimization with
  hierarchical Gaussian processes
HyperBO+: Pre-training a universal prior for Bayesian optimization with hierarchical Gaussian processes
Z. Fan
Xinran Han
Zehao Wang
91
4
0
20 Dec 2022
GParareal: A time-parallel ODE solver using Gaussian process emulation
GParareal: A time-parallel ODE solver using Gaussian process emulation
K. Pentland
M. Tamborrino
Timothy John Sullivan
J. Buchanan
Lynton C. Appel
48
8
0
31 Jan 2022
1