ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.09346
  4. Cited By
Error estimates for physics informed neural networks approximating the
  Navier-Stokes equations

Error estimates for physics informed neural networks approximating the Navier-Stokes equations

17 March 2022
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
    PINN
ArXivPDFHTML

Papers citing "Error estimates for physics informed neural networks approximating the Navier-Stokes equations"

14 / 14 papers shown
Title
Astral: training physics-informed neural networks with error majorants
Astral: training physics-informed neural networks with error majorants
V. Fanaskov
Tianchi Yu
Alexander Rudikov
Ivan V. Oseledets
33
1
0
04 Jun 2024
Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs
  with applications in heterogeneous media
Physics-Aware Neural Implicit Solvers for multiscale, parametric PDEs with applications in heterogeneous media
Matthaios Chatzopoulos
P. Koutsourelakis
AI4CE
39
3
0
29 May 2024
Unveiling the optimization process of Physics Informed Neural Networks:
  How accurate and competitive can PINNs be?
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
45
6
0
07 May 2024
Machine learning and domain decomposition methods -- a survey
Machine learning and domain decomposition methods -- a survey
A. Klawonn
M. Lanser
J. Weber
AI4CE
21
7
0
21 Dec 2023
Investigating the Ability of PINNs To Solve Burgers' PDE Near
  Finite-Time BlowUp
Investigating the Ability of PINNs To Solve Burgers' PDE Near Finite-Time BlowUp
Dibyakanti Kumar
Anirbit Mukherjee
31
2
0
08 Oct 2023
A numerical approach for the fractional Laplacian via deep neural
  networks
A numerical approach for the fractional Laplacian via deep neural networks
Nicolás Valenzuela
29
3
0
30 Aug 2023
Error convergence and engineering-guided hyperparameter search of PINNs:
  towards optimized I-FENN performance
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
35
20
0
03 Mar 2023
How important are activation functions in regression and classification?
  A survey, performance comparison, and future directions
How important are activation functions in regression and classification? A survey, performance comparison, and future directions
Ameya Dilip Jagtap
George Karniadakis
AI4CE
31
71
0
06 Sep 2022
Error analysis for deep neural network approximations of parametric
  hyperbolic conservation laws
Error analysis for deep neural network approximations of parametric hyperbolic conservation laws
Tim De Ryck
Siddhartha Mishra
PINN
13
10
0
15 Jul 2022
Is $L^2$ Physics-Informed Loss Always Suitable for Training
  Physics-Informed Neural Network?
Is L2L^2L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
Chuwei Wang
Shanda Li
Di He
Liwei Wang
AI4CE
PINN
23
28
0
04 Jun 2022
Scientific Machine Learning through Physics-Informed Neural Networks:
  Where we are and What's next
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,179
0
14 Jan 2022
Parallel Physics-Informed Neural Networks via Domain Decomposition
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
101
274
0
20 Apr 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
211
2,287
0
18 Oct 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
183
759
0
13 Mar 2020
1