Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.09661
Cited By
Meta-Reinforcement Learning for the Tuning of PI Controllers: An Offline Approach
17 March 2022
Daniel G. McClement
Nathan P. Lawrence
Johan U. Backstrom
Philip D. Loewen
M. Forbes
R. Bhushan Gopaluni
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Meta-Reinforcement Learning for the Tuning of PI Controllers: An Offline Approach"
7 / 7 papers shown
Title
Scenario-based Thermal Management Parametrization Through Deep Reinforcement Learning
Thomas Rudolf
Philip Muhl
Sören Hohmann
Lutz Eckstein
29
0
0
04 Aug 2024
Machine learning for industrial sensing and control: A survey and practical perspective
Nathan P. Lawrence
S. Damarla
Jong Woo Kim
Aditya Tulsyan
Faraz Amjad
Kai Wang
Benoît Chachuat
Jong Min Lee
Biao Huang
R. Bhushan Gopaluni
AI4CE
40
20
0
24 Jan 2024
ReACT: Reinforcement Learning for Controller Parametrization using B-Spline Geometries
Thomas Rudolf
Daniel Flögel
Tobias Schürmann
Simon Süß
S. Schwab
Sören Hohmann
AI4CE
36
1
0
10 Jan 2024
Neural Operators for PDE Backstepping Control of First-Order Hyperbolic PIDE with Recycle and Delay
Jie Qi
Jing Zhang
Miroslav Krstic
39
14
0
21 Jul 2023
Reinforcement Learning with Partial Parametric Model Knowledge
Shuyuan Wang
Philip D. Loewen
Nathan P. Lawrence
M. Forbes
R. Bhushan Gopaluni
KELM
16
0
0
26 Apr 2023
Meta-Reinforcement Learning for Adaptive Control of Second Order Systems
Daniel G. McClement
Nathan P. Lawrence
M. Forbes
Philip D. Loewen
Johan U. Backstrom
R. Bhushan Gopaluni
OffRL
15
1
0
19 Sep 2022
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
353
11,684
0
09 Mar 2017
1