Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.09735
Cited By
PRBoost: Prompt-Based Rule Discovery and Boosting for Interactive Weakly-Supervised Learning
18 March 2022
Rongzhi Zhang
Yue Yu
Pranav Shetty
Le Song
Chao Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PRBoost: Prompt-Based Rule Discovery and Boosting for Interactive Weakly-Supervised Learning"
6 / 6 papers shown
Title
AutoWS-Bench-101: Benchmarking Automated Weak Supervision with 100 Labels
Nicholas Roberts
Xintong Li
Tzu-Heng Huang
Dyah Adila
Spencer Schoenberg
Chengao Liu
Lauren Pick
Haotian Ma
Aws Albarghouthi
Frederic Sala
UQCV
14
7
0
30 Aug 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
234
780
0
14 Oct 2021
PTR: Prompt Tuning with Rules for Text Classification
Xu Han
Weilin Zhao
Ning Ding
Zhiyuan Liu
Maosong Sun
VLM
33
510
0
24 May 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
275
3,784
0
18 Apr 2021
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
238
1,898
0
31 Dec 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
248
1,382
0
21 Jan 2020
1