ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.12091
  4. Cited By
FxP-QNet: A Post-Training Quantizer for the Design of Mixed
  Low-Precision DNNs with Dynamic Fixed-Point Representation

FxP-QNet: A Post-Training Quantizer for the Design of Mixed Low-Precision DNNs with Dynamic Fixed-Point Representation

22 March 2022
Ahmad Shawahna
S. M. Sait
A. El-Maleh
Irfan Ahmad
    MQ
ArXivPDFHTML

Papers citing "FxP-QNet: A Post-Training Quantizer for the Design of Mixed Low-Precision DNNs with Dynamic Fixed-Point Representation"

3 / 3 papers shown
Title
Optimization of FPGA-based CNN Accelerators Using Metaheuristics
Optimization of FPGA-based CNN Accelerators Using Metaheuristics
S. M. Sait
A. El-Maleh
Mohammad Altakrouri
Ahmad Shawahna
16
7
0
22 Sep 2022
MOHAQ: Multi-Objective Hardware-Aware Quantization of Recurrent Neural
  Networks
MOHAQ: Multi-Objective Hardware-Aware Quantization of Recurrent Neural Networks
Nesma M. Rezk
Tomas Nordstrom
D. Stathis
Z. Ul-Abdin
E. Aksoy
A. Hemani
MQ
20
1
0
02 Aug 2021
Incremental Network Quantization: Towards Lossless CNNs with
  Low-Precision Weights
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
311
1,047
0
10 Feb 2017
1