ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.12533
  4. Cited By
Pathways: Asynchronous Distributed Dataflow for ML

Pathways: Asynchronous Distributed Dataflow for ML

23 March 2022
P. Barham
Aakanksha Chowdhery
J. Dean
Sanjay Ghemawat
Steven Hand
Dan Hurt
Michael Isard
Hyeontaek Lim
Ruoming Pang
Sudip Roy
Brennan Saeta
Parker Schuh
Ryan Sepassi
Laurent El Shafey
C. A. Thekkath
Yonghui Wu
    GNN
    MoE
ArXivPDFHTML

Papers citing "Pathways: Asynchronous Distributed Dataflow for ML"

27 / 77 papers shown
Title
Quant 4.0: Engineering Quantitative Investment with Automated,
  Explainable and Knowledge-driven Artificial Intelligence
Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence
Jian Guo
Sai Wang
L. Ni
H. Shum
AIFin
11
7
0
13 Dec 2022
OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist
  Models
OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist Models
Jinze Bai
Rui Men
Han Yang
Xuancheng Ren
Kai Dang
...
Wenhang Ge
Jianxin Ma
Junyang Lin
Jingren Zhou
Chang Zhou
37
15
0
08 Dec 2022
InternVideo: General Video Foundation Models via Generative and
  Discriminative Learning
InternVideo: General Video Foundation Models via Generative and Discriminative Learning
Yi Wang
Kunchang Li
Yizhuo Li
Yinan He
Bingkun Huang
...
Junting Pan
Jiashuo Yu
Yali Wang
Limin Wang
Yu Qiao
VLM
VGen
38
309
0
06 Dec 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
21
60
0
17 Nov 2022
XRBench: An Extended Reality (XR) Machine Learning Benchmark Suite for
  the Metaverse
XRBench: An Extended Reality (XR) Machine Learning Benchmark Suite for the Metaverse
Hyoukjun Kwon
Krishnakumar Nair
Jamin Seo
Jason Yik
D. Mohapatra
...
Ashish Sirasao
T. Krishna
Harshit Khaitan
Vikas Chandra
Vijay Janapa Reddi
27
32
0
16 Nov 2022
On Optimizing the Communication of Model Parallelism
On Optimizing the Communication of Model Parallelism
Yonghao Zhuang
Hexu Zhao
Lianmin Zheng
Zhuohan Li
Eric P. Xing
Qirong Ho
Joseph E. Gonzalez
Ion Stoica
Haotong Zhang
22
23
0
10 Nov 2022
Accelerating Distributed MoE Training and Inference with Lina
Accelerating Distributed MoE Training and Inference with Lina
Jiamin Li
Yimin Jiang
Yibo Zhu
Cong Wang
Hong-Yu Xu
MoE
17
56
0
31 Oct 2022
ALCOP: Automatic Load-Compute Pipelining in Deep Learning Compiler for
  AI-GPUs
ALCOP: Automatic Load-Compute Pipelining in Deep Learning Compiler for AI-GPUs
Guyue Huang
Yang Bai
L. Liu
Yuke Wang
Bei Yu
Yufei Ding
Yuan Xie
44
16
0
29 Oct 2022
Generative Knowledge Graph Construction: A Review
Generative Knowledge Graph Construction: A Review
Hongbin Ye
Ningyu Zhang
Hui Chen
Huajun Chen
43
70
0
23 Oct 2022
Attribution and Obfuscation of Neural Text Authorship: A Data Mining
  Perspective
Attribution and Obfuscation of Neural Text Authorship: A Data Mining Perspective
Adaku Uchendu
Thai Le
Dongwon Lee
DeLMO
19
40
0
19 Oct 2022
The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in
  Transformers
The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in Transformers
Zong-xiao Li
Chong You
Srinadh Bhojanapalli
Daliang Li
A. S. Rawat
...
Kenneth Q Ye
Felix Chern
Felix X. Yu
Ruiqi Guo
Surinder Kumar
MoE
25
87
0
12 Oct 2022
A Continual Development Methodology for Large-scale Multitask Dynamic ML
  Systems
A Continual Development Methodology for Large-scale Multitask Dynamic ML Systems
Andrea Gesmundo
19
18
0
15 Sep 2022
EnergonAI: An Inference System for 10-100 Billion Parameter Transformer
  Models
EnergonAI: An Inference System for 10-100 Billion Parameter Transformer Models
Jiangsu Du
Ziming Liu
Jiarui Fang
Shenggui Li
Yongbin Li
Yutong Lu
Yang You
MoE
16
4
0
06 Sep 2022
Efficient Methods for Natural Language Processing: A Survey
Efficient Methods for Natural Language Processing: A Survey
Marcos Vinícius Treviso
Ji-Ung Lee
Tianchu Ji
Betty van Aken
Qingqing Cao
...
Emma Strubell
Niranjan Balasubramanian
Leon Derczynski
Iryna Gurevych
Roy Schwartz
28
109
0
31 Aug 2022
EasyScale: Accuracy-consistent Elastic Training for Deep Learning
EasyScale: Accuracy-consistent Elastic Training for Deep Learning
Mingzhen Li
Wencong Xiao
Biao Sun
Hanyu Zhao
Hailong Yang
...
Xianyan Jia
Yi Liu
Yong Li
Wei Lin
D. Qian
12
7
0
30 Aug 2022
Asynchronous Execution of Heterogeneous Tasks in ML-driven HPC Workflows
Asynchronous Execution of Heterogeneous Tasks in ML-driven HPC Workflows
V. Pascuzzi
Ozgur O. Kilic
Matteo Turilli
S. Jha
11
2
0
23 Aug 2022
GPPF: A General Perception Pre-training Framework via Sparsely Activated
  Multi-Task Learning
GPPF: A General Perception Pre-training Framework via Sparsely Activated Multi-Task Learning
Benyuan Sun
Jinqiao Dai
Zihao Liang
Cong Liu
Yi Yang
Bo Bai
MoE
18
4
0
03 Aug 2022
LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient
  Inference in Large-Scale Generative Language Models
LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models
Gunho Park
Baeseong Park
Minsub Kim
Sungjae Lee
Jeonghoon Kim
Beomseok Kwon
S. Kwon
Byeongwook Kim
Youngjoo Lee
Dongsoo Lee
MQ
13
71
0
20 Jun 2022
An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale
  Multitask Learning Systems
An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems
Andrea Gesmundo
J. Dean
31
23
0
25 May 2022
Nebula-I: A General Framework for Collaboratively Training Deep Learning
  Models on Low-Bandwidth Cloud Clusters
Nebula-I: A General Framework for Collaboratively Training Deep Learning Models on Low-Bandwidth Cloud Clusters
Yang Xiang
Zhihua Wu
Weibao Gong
Siyu Ding
Xianjie Mo
...
Yue Yu
Ge Li
Yu Sun
Yanjun Ma
Dianhai Yu
19
4
0
19 May 2022
Serving and Optimizing Machine Learning Workflows on Heterogeneous
  Infrastructures
Serving and Optimizing Machine Learning Workflows on Heterogeneous Infrastructures
Yongji Wu
Matthew Lentz
Danyang Zhuo
Yao Lu
13
22
0
10 May 2022
CoCa: Contrastive Captioners are Image-Text Foundation Models
CoCa: Contrastive Captioners are Image-Text Foundation Models
Jiahui Yu
Zirui Wang
Vijay Vasudevan
Legg Yeung
Mojtaba Seyedhosseini
Yonghui Wu
VLM
CLIP
OffRL
48
1,253
0
04 May 2022
PaLM: Scaling Language Modeling with Pathways
PaLM: Scaling Language Modeling with Pathways
Aakanksha Chowdhery
Sharan Narang
Jacob Devlin
Maarten Bosma
Gaurav Mishra
...
Kathy Meier-Hellstern
Douglas Eck
J. Dean
Slav Petrov
Noah Fiedel
PILM
LRM
62
5,983
0
05 Apr 2022
PanGu-Bot: Efficient Generative Dialogue Pre-training from Pre-trained
  Language Model
PanGu-Bot: Efficient Generative Dialogue Pre-training from Pre-trained Language Model
Fei Mi
Yitong Li
Yulong Zeng
Jingyan Zhou
Yasheng Wang
Chuanfei Xu
Lifeng Shang
Xin Jiang
Shiqi Zhao
Qun Liu
ALM
37
18
0
31 Mar 2022
Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed
  Deep Learning
Alpa: Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning
Lianmin Zheng
Zhuohan Li
Hao Zhang
Yonghao Zhuang
Zhifeng Chen
...
Yuanzhong Xu
Danyang Zhuo
Eric P. Xing
Joseph E. Gonzalez
Ion Stoica
MoE
14
104
0
28 Jan 2022
Deep Learning Training in Facebook Data Centers: Design of Scale-up and
  Scale-out Systems
Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems
Maxim Naumov
John Kim
Dheevatsa Mudigere
Srinivas Sridharan
Xiaodong Wang
...
Krishnakumar Nair
Isabel Gao
Bor-Yiing Su
Jiyan Yang
M. Smelyanskiy
GNN
33
83
0
20 Mar 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
243
1,815
0
17 Sep 2019
Previous
12