Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.13993
Cited By
RSCFed: Random Sampling Consensus Federated Semi-supervised Learning
26 March 2022
Xiaoxiao Liang
Yiqun Lin
H. Fu
Lei Zhu
X. Li
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"RSCFed: Random Sampling Consensus Federated Semi-supervised Learning"
28 / 28 papers shown
Title
Federated Source-free Domain Adaptation for Classification: Weighted Cluster Aggregation for Unlabeled Data
Junki Mori
Kosuke Kihara
Taiki Miyagawa
Akinori F. Ebihara
Isamu Teranishi
Hisashi Kashima
76
1
0
18 Dec 2024
(FL)
2
^2
2
: Overcoming Few Labels in Federated Semi-Supervised Learning
Seungjoo Lee
Thanh-Long V. Le
Jaemin Shin
Sung-Ju Lee
FedML
34
1
0
30 Oct 2024
COALA: A Practical and Vision-Centric Federated Learning Platform
Weiming Zhuang
Jian Xu
Chen Chen
Jingtao Li
Lingjuan Lyu
VLM
FedML
72
4
0
23 Jul 2024
Learning Unlabeled Clients Divergence via Anchor Model Aggregation for Federated Semi-supervised Learning
Marawan Elbatel
Hualiang Wang
Jixiang Chen
Hao Wang
Xiaomeng Li
FedML
55
0
0
14 Jul 2024
FedMLP: Federated Multi-Label Medical Image Classification under Task Heterogeneity
Zhaobin Sun
Nannan Wu
Junjie Shi
Li Yu
Xin Yang
Kwang-Ting Cheng
Zengqiang Yan
21
0
0
27 Jun 2024
Estimating before Debiasing: A Bayesian Approach to Detaching Prior Bias in Federated Semi-Supervised Learning
Guogang Zhu
Xuefeng Liu
Xinghao Wu
Shaojie Tang
Chao Tang
Jianwei Niu
Hao Su
FedML
47
1
0
30 May 2024
A Mutual Information Perspective on Federated Contrastive Learning
Christos Louizos
M. Reisser
Denis Korzhenkov
SSL
FedML
30
2
0
03 May 2024
Robust Training of Federated Models with Extremely Label Deficiency
Yonggang Zhang
Zhiqin Yang
Xinmei Tian
Nannan Wang
Tongliang Liu
Bo Han
FedML
29
6
0
22 Feb 2024
Rethinking Semi-Supervised Federated Learning: How to co-train fully-labeled and fully-unlabeled client imaging data
Pramit Saha
Divyanshu Mishra
J. A. Noble
FedML
35
8
0
28 Oct 2023
Local or Global: Selective Knowledge Assimilation for Federated Learning with Limited Labels
Yae Jee Cho
Gauri Joshi
Dimitrios Dimitriadis
FedML
19
4
0
17 Jul 2023
Combating Data Imbalances in Federated Semi-supervised Learning with Dual Regulators
Sikai Bai
Shuaicheng Li
Weiming Zhuang
Jie M. Zhang
Song Guo
Kunlin Yang
Jun Hou
Shuai Zhang
Junyu Gao
Shuai Yi
FedML
24
6
0
11 Jul 2023
Towards Open Federated Learning Platforms: Survey and Vision from Technical and Legal Perspectives
Moming Duan
Qinbin Li
Linshan Jiang
Bingsheng He
FedML
28
4
0
05 Jul 2023
FedNoRo: Towards Noise-Robust Federated Learning by Addressing Class Imbalance and Label Noise Heterogeneity
Nannan Wu
Li Yu
Xue Jiang
Kwang-Ting Cheng
Zengqiang Yan
FedML
28
36
0
09 May 2023
Exploring One-shot Semi-supervised Federated Learning with A Pre-trained Diffusion Model
Min Yang
Shangchao Su
Bin Li
Xiangyang Xue
DiffM
19
29
0
06 May 2023
Towards Unbiased Training in Federated Open-world Semi-supervised Learning
Jie M. Zhang
Xiaosong Ma
Song Guo
Wenchao Xu
FedML
22
8
0
01 May 2023
Federated Learning without Full Labels: A Survey
Yilun Jin
Yang Liu
Kai Chen
Qian Yang
FedML
10
26
0
25 Mar 2023
FedMAE: Federated Self-Supervised Learning with One-Block Masked Auto-Encoder
Nan Yang
Xuanyu Chen
Charles Z. Liu
Dong Yuan
Wei Bao
Li-zhen Cui
35
2
0
20 Mar 2023
Federated Semi-Supervised Learning with Annotation Heterogeneity
Xinyi Shang
Gang Huang
Yang Lu
Jian Lou
Bo Han
Y. Cheung
Hanzi Wang
FedML
41
1
0
04 Mar 2023
FedIL: Federated Incremental Learning from Decentralized Unlabeled Data with Convergence Analysis
Nan Yang
Dong Yuan
Charles Z. Liu
Yong Deng
Wei Bao
FedML
58
5
0
23 Feb 2023
Dual Class-Aware Contrastive Federated Semi-Supervised Learning
Qianling Guo
Yong Qi
Saiyu Qi
Di Wu
FedML
21
5
0
16 Nov 2022
Cross-client Label Propagation for Transductive and Semi-Supervised Federated Learning
Jonathan Scott
Michelle Yeo
Christoph H. Lampert
FedML
14
0
0
12 Oct 2022
Calibrating Label Distribution for Class-Imbalanced Barely-Supervised Knee Segmentation
Yiqun Lin
Huifeng Yao
Zezhong Li
Guoyan Zheng
X. Li
19
29
0
07 May 2022
Challenges and Approaches for Mitigating Byzantine Attacks in Federated Learning
Junyu Shi
Wei Wan
Shengshan Hu
Jianrong Lu
L. Zhang
AAML
22
74
0
29 Dec 2021
Specificity-Preserving Federated Learning for MR Image Reconstruction
Chun-Mei Feng
Yu-bao Yan
Shanshan Wang
Yong Xu
Ling Shao
H. Fu
OOD
24
78
0
09 Dec 2021
Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning
Shaoxiong Ji
Yue Tan
Teemu Saravirta
Zhiqin Yang
Yixin Liu
Lauri Vasankari
Shirui Pan
Guodong Long
A. Walid
FedML
31
76
0
25 Feb 2021
Federated Learning on Non-IID Data Silos: An Experimental Study
Q. Li
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
87
945
0
03 Feb 2021
Improving Semi-supervised Federated Learning by Reducing the Gradient Diversity of Models
Zhengming Zhang
Yaoqing Yang
Z. Yao
Yujun Yan
Joseph E. Gonzalez
Michael W. Mahoney
FedML
31
36
0
26 Aug 2020
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
Antti Tarvainen
Harri Valpola
OOD
MoMe
261
1,275
0
06 Mar 2017
1