ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.15015
  4. Cited By
Deep Interactive Learning-based ovarian cancer segmentation of
  H&E-stained whole slide images to study morphological patterns of BRCA
  mutation

Deep Interactive Learning-based ovarian cancer segmentation of H&E-stained whole slide images to study morphological patterns of BRCA mutation

28 March 2022
D. J. Ho
M. Chui
Chad M. Vanderbilt
J. Jung
M. Robson
Chan-Sik Park
Jin Roh
Thomas J. Fuchs
ArXiv (abs)PDFHTMLGithub (11★)

Papers citing "Deep Interactive Learning-based ovarian cancer segmentation of H&E-stained whole slide images to study morphological patterns of BRCA mutation"

5 / 5 papers shown
Title
Deep Interactive Segmentation of Medical Images: A Systematic Review and
  Taxonomy
Deep Interactive Segmentation of Medical Images: A Systematic Review and Taxonomy
Zdravko Marinov
Paul F. Jäger
Jan Egger
Jens Kleesiek
Rainer Stiefelhagen
82
19
0
23 Nov 2023
Ovarian Cancer Data Analysis using Deep Learning: A Systematic Review
  from the Perspectives of Key Features of Data Analysis and AI Assurance
Ovarian Cancer Data Analysis using Deep Learning: A Systematic Review from the Perspectives of Key Features of Data Analysis and AI Assurance
Muta Tah Hira
M. Razzaque
Mosharraf Sarker
46
1
0
20 Nov 2023
Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic
  Review
Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic Review
Jack Breen
Katie Allen
K. Zucker
P. Adusumilli
A. Scarsbrook
Geoff Hall
Nicolas M. Orsi
Nishant Ravikumar
75
34
0
31 Mar 2023
Deep Learning-Based Prediction of Molecular Tumor Biomarkers from H&E: A
  Practical Review
Deep Learning-Based Prediction of Molecular Tumor Biomarkers from H&E: A Practical Review
Heather D. Couture
93
20
0
27 Nov 2022
Multiple Instance Learning for Digital Pathology: A Review on the
  State-of-the-Art, Limitations & Future Potential
Multiple Instance Learning for Digital Pathology: A Review on the State-of-the-Art, Limitations & Future Potential
M. Gadermayr
M. Tschuchnig
96
68
0
09 Jun 2022
1