Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.15756
Cited By
v1
v2
v3 (latest)
Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data
29 March 2022
Siyuan Guo
V. Tóth
Bernhard Schölkopf
Ferenc Huszár
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Github (2★)
Papers citing
"Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data"
23 / 23 papers shown
Title
Do-PFN: In-Context Learning for Causal Effect Estimation
Jake Robertson
Arik Reuter
Siyuan Guo
Noah Hollmann
Frank Hutter
Bernhard Schölkopf
CML
63
0
0
06 Jun 2025
Counterfactual reasoning: an analysis of in-context emergence
Moritz Miller
Bernhard Schölkopf
Siyuan Guo
ReLM
LRM
159
0
0
05 Jun 2025
Bayesian Hierarchical Invariant Prediction
Francisco Madaleno
Pernille Julie Viuff Sand
Francisco C. Pereira
Sergio Hernan Garrido Mejia
74
0
0
16 May 2025
Multi-Domain Causal Discovery in Bijective Causal Models
Kasra Jalaldoust
Saber Salehkaleybar
Negar Kiyavash
CML
98
0
0
30 Apr 2025
Falsification of Unconfoundedness by Testing Independence of Causal Mechanisms
R. Karlsson
Jesse H. Krijthe
CML
155
1
0
10 Feb 2025
Causal vs. Anticausal merging of predictors
Sergio Hernan Garrido Mejia
Patrick Blobaum
Bernhard Schölkopf
Dominik Janzing
68
0
0
14 Jan 2025
Detecting and Measuring Confounding Using Causal Mechanism Shifts
Abbavaram Gowtham Reddy
Vineeth N Balasubramanian
CML
78
2
0
26 Sep 2024
Do Finetti: On Causal Effects for Exchangeable Data
Siyuan Guo
Chi Zhang
Karthika Mohan
Ferenc Huszár
Bernhard Schölkopf
71
5
0
29 May 2024
Position: Understanding LLMs Requires More Than Statistical Generalization
Patrik Reizinger
Szilvia Ujváry
Anna Mészáros
A. Kerekes
Wieland Brendel
Ferenc Huszár
130
16
0
03 May 2024
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis
Goutham Rajendran
Patrik Reizinger
Wieland Brendel
Pradeep Ravikumar
CML
156
8
0
29 Nov 2023
Causality-Based Feature Importance Quantifying Methods: PN-FI, PS-FI and PNS-FI
S. Du
Yaxiu Sun
Changying Du
31
0
0
28 Aug 2023
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
94
7
0
02 Jul 2023
Bivariate Causal Discovery using Bayesian Model Selection
Anish Dhir
Samuel Power
Mark van der Wilk
CML
63
3
0
05 Jun 2023
Provably Learning Object-Centric Representations
Jack Brady
Roland S. Zimmermann
Yash Sharma
Bernhard Schölkopf
Julius von Kügelgen
Wieland Brendel
OCL
89
36
0
23 May 2023
Out-of-Variable Generalization for Discriminative Models
Siyuan Guo
J. Wildberger
Bernhard Schölkopf
OOD
CML
90
2
0
16 Apr 2023
Dataflow graphs as complete causal graphs
Andrei Paleyes
Siyuan Guo
Bernhard Schölkopf
Neil D. Lawrence
63
7
0
16 Mar 2023
AI for Science: An Emerging Agenda
Philipp Berens
Kyle Cranmer
Neil D. Lawrence
U. V. Luxburg
Jessica Montgomery
65
6
0
07 Mar 2023
On the Interventional Kullback-Leibler Divergence
J. Wildberger
Siyuan Guo
Arnab Bhattacharyya
Bernhard Schölkopf
OOD
CML
79
6
0
10 Feb 2023
SDYN-GANs: Adversarial Learning Methods for Multistep Generative Models for General Order Stochastic Dynamics
P. Stinis
C. Daskalakis
P. Atzberger
SyDa
GAN
83
5
0
07 Feb 2023
Non-parametric identifiability and sensitivity analysis of synthetic control models
Jakob Zeitler
Athanasios Vlontzos
Ciarán M. Gilligan-Lee
CML
57
6
0
18 Jan 2023
Object Representations as Fixed Points: Training Iterative Refinement Algorithms with Implicit Differentiation
Michael Chang
Thomas Griffiths
Sergey Levine
OCL
114
61
0
02 Jul 2022
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
100
50
0
04 Jun 2022
Detecting hidden confounding in observational data using multiple environments
R. Karlsson
Jesse H. Krijthe
CML
OOD
94
13
0
27 May 2022
1