ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.15756
  4. Cited By
Causal de Finetti: On the Identification of Invariant Causal Structure
  in Exchangeable Data
v1v2v3 (latest)

Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data

29 March 2022
Siyuan Guo
V. Tóth
Bernhard Schölkopf
Ferenc Huszár
    CML
ArXiv (abs)PDFHTMLGithub (2★)

Papers citing "Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data"

23 / 23 papers shown
Title
Do-PFN: In-Context Learning for Causal Effect Estimation
Do-PFN: In-Context Learning for Causal Effect Estimation
Jake Robertson
Arik Reuter
Siyuan Guo
Noah Hollmann
Frank Hutter
Bernhard Schölkopf
CML
63
0
0
06 Jun 2025
Counterfactual reasoning: an analysis of in-context emergence
Moritz Miller
Bernhard Schölkopf
Siyuan Guo
ReLMLRM
159
0
0
05 Jun 2025
Bayesian Hierarchical Invariant Prediction
Bayesian Hierarchical Invariant Prediction
Francisco Madaleno
Pernille Julie Viuff Sand
Francisco C. Pereira
Sergio Hernan Garrido Mejia
74
0
0
16 May 2025
Multi-Domain Causal Discovery in Bijective Causal Models
Multi-Domain Causal Discovery in Bijective Causal Models
Kasra Jalaldoust
Saber Salehkaleybar
Negar Kiyavash
CML
98
0
0
30 Apr 2025
Falsification of Unconfoundedness by Testing Independence of Causal Mechanisms
Falsification of Unconfoundedness by Testing Independence of Causal Mechanisms
R. Karlsson
Jesse H. Krijthe
CML
155
1
0
10 Feb 2025
Causal vs. Anticausal merging of predictors
Causal vs. Anticausal merging of predictors
Sergio Hernan Garrido Mejia
Patrick Blobaum
Bernhard Schölkopf
Dominik Janzing
68
0
0
14 Jan 2025
Detecting and Measuring Confounding Using Causal Mechanism Shifts
Detecting and Measuring Confounding Using Causal Mechanism Shifts
Abbavaram Gowtham Reddy
Vineeth N Balasubramanian
CML
78
2
0
26 Sep 2024
Do Finetti: On Causal Effects for Exchangeable Data
Do Finetti: On Causal Effects for Exchangeable Data
Siyuan Guo
Chi Zhang
Karthika Mohan
Ferenc Huszár
Bernhard Schölkopf
71
5
0
29 May 2024
Position: Understanding LLMs Requires More Than Statistical
  Generalization
Position: Understanding LLMs Requires More Than Statistical Generalization
Patrik Reizinger
Szilvia Ujváry
Anna Mészáros
A. Kerekes
Wieland Brendel
Ferenc Huszár
130
16
0
03 May 2024
An Interventional Perspective on Identifiability in Gaussian LTI Systems
  with Independent Component Analysis
An Interventional Perspective on Identifiability in Gaussian LTI Systems with Independent Component Analysis
Goutham Rajendran
Patrik Reizinger
Wieland Brendel
Pradeep Ravikumar
CML
156
8
0
29 Nov 2023
Causality-Based Feature Importance Quantifying Methods: PN-FI, PS-FI and
  PNS-FI
Causality-Based Feature Importance Quantifying Methods: PN-FI, PS-FI and PNS-FI
S. Du
Yaxiu Sun
Changying Du
31
0
0
28 Aug 2023
Conditionally Invariant Representation Learning for Disentangling
  Cellular Heterogeneity
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
94
7
0
02 Jul 2023
Bivariate Causal Discovery using Bayesian Model Selection
Bivariate Causal Discovery using Bayesian Model Selection
Anish Dhir
Samuel Power
Mark van der Wilk
CML
63
3
0
05 Jun 2023
Provably Learning Object-Centric Representations
Provably Learning Object-Centric Representations
Jack Brady
Roland S. Zimmermann
Yash Sharma
Bernhard Schölkopf
Julius von Kügelgen
Wieland Brendel
OCL
89
36
0
23 May 2023
Out-of-Variable Generalization for Discriminative Models
Out-of-Variable Generalization for Discriminative Models
Siyuan Guo
J. Wildberger
Bernhard Schölkopf
OODCML
90
2
0
16 Apr 2023
Dataflow graphs as complete causal graphs
Dataflow graphs as complete causal graphs
Andrei Paleyes
Siyuan Guo
Bernhard Schölkopf
Neil D. Lawrence
63
7
0
16 Mar 2023
AI for Science: An Emerging Agenda
AI for Science: An Emerging Agenda
Philipp Berens
Kyle Cranmer
Neil D. Lawrence
U. V. Luxburg
Jessica Montgomery
65
6
0
07 Mar 2023
On the Interventional Kullback-Leibler Divergence
On the Interventional Kullback-Leibler Divergence
J. Wildberger
Siyuan Guo
Arnab Bhattacharyya
Bernhard Schölkopf
OODCML
79
6
0
10 Feb 2023
SDYN-GANs: Adversarial Learning Methods for Multistep Generative Models
  for General Order Stochastic Dynamics
SDYN-GANs: Adversarial Learning Methods for Multistep Generative Models for General Order Stochastic Dynamics
P. Stinis
C. Daskalakis
P. Atzberger
SyDaGAN
83
5
0
07 Feb 2023
Non-parametric identifiability and sensitivity analysis of synthetic
  control models
Non-parametric identifiability and sensitivity analysis of synthetic control models
Jakob Zeitler
Athanasios Vlontzos
Ciarán M. Gilligan-Lee
CML
57
6
0
18 Jan 2023
Object Representations as Fixed Points: Training Iterative Refinement
  Algorithms with Implicit Differentiation
Object Representations as Fixed Points: Training Iterative Refinement Algorithms with Implicit Differentiation
Michael Chang
Thomas Griffiths
Sergey Levine
OCL
114
61
0
02 Jul 2022
Causal Discovery in Heterogeneous Environments Under the Sparse
  Mechanism Shift Hypothesis
Causal Discovery in Heterogeneous Environments Under the Sparse Mechanism Shift Hypothesis
Ronan Perry
Julius von Kügelgen
Bernhard Schölkopf
100
50
0
04 Jun 2022
Detecting hidden confounding in observational data using multiple
  environments
Detecting hidden confounding in observational data using multiple environments
R. Karlsson
Jesse H. Krijthe
CMLOOD
94
13
0
27 May 2022
1