Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2203.16577
Cited By
Calibrating constitutive models with full-field data via physics informed neural networks
30 March 2022
Craig M. Hamel
K. Long
S. Kramer
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Calibrating constitutive models with full-field data via physics informed neural networks"
9 / 9 papers shown
Title
Differentiable programming across the PDE and Machine Learning barrier
N. Bouziani
David A. Ham
Ado Farsi
PINN
AI4CE
32
1
0
09 Sep 2024
Deterministic and statistical calibration of constitutive models from full-field data with parametric physics-informed neural networks
D. Anton
Jendrik-Alexander Tröger
Henning Wessels
Ulrich Römer
Alexander Henkes
Stefan Hartmann
AI4CE
24
4
0
28 May 2024
Identifying Constitutive Parameters for Complex Hyperelastic Materials using Physics-Informed Neural Networks
Siyuan Song
Hanxun Jin
AI4CE
PINN
19
6
0
29 Aug 2023
Predicting and explaining nonlinear material response using deep Physically Guided Neural Networks with Internal Variables
Javier Orera-Echeverria
J. Ayensa-Jiménez
Manuel Doblaré
18
1
0
07 Aug 2023
Spectral-Bias and Kernel-Task Alignment in Physically Informed Neural Networks
Inbar Seroussi
Asaf Miron
Z. Ringel
PINN
32
0
0
12 Jul 2023
Physics-Informed Neural Networks for Material Model Calibration from Full-Field Displacement Data
D. Anton
Henning Wessels
AI4CE
22
7
0
15 Dec 2022
Modular machine learning-based elastoplasticity: generalization in the context of limited data
J. Fuhg
Craig M. Hamel
K. Johnson
Reese E. Jones
N. Bouklas
14
48
0
15 Oct 2022
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
755
0
13 Mar 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
506
0
11 Mar 2020
1