ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.00323
  4. Cited By
Graph-in-Graph (GiG): Learning interpretable latent graphs in
  non-Euclidean domain for biological and healthcare applications

Graph-in-Graph (GiG): Learning interpretable latent graphs in non-Euclidean domain for biological and healthcare applications

1 April 2022
Kamilia Mullakaeva
Luca Cosmo
Anees Kazi
Seyed-Ahmad Ahmadi
Nassir Navab
Michael M. Bronstein
ArXivPDFHTML

Papers citing "Graph-in-Graph (GiG): Learning interpretable latent graphs in non-Euclidean domain for biological and healthcare applications"

6 / 6 papers shown
Title
Heterogeneous Graph Structure Learning through the Lens of Data-generating Processes
Keyue Jiang
Bohan Tang
Xiaowen Dong
Laura Toni
41
0
0
11 Mar 2025
MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction
MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction
Luhui Cai
Weiming Zeng
Hongyu Chen
Hua Zhang
Yueyang Li
Hongjie Yan
Lingbin Bian
Lingbin Bian
Wai Ting Siok
Nizhuan Wang
MedIm
45
3
0
20 Jun 2024
Few-Shot Graph Learning for Molecular Property Prediction
Few-Shot Graph Learning for Molecular Property Prediction
Zhichun Guo
Chuxu Zhang
W. Yu
John E. Herr
Olaf Wiest
Meng-Long Jiang
Nitesh V. Chawla
AI4CE
106
168
0
16 Feb 2021
Deep Graph Normalizer: A Geometric Deep Learning Approach for Estimating
  Connectional Brain Templates
Deep Graph Normalizer: A Geometric Deep Learning Approach for Estimating Connectional Brain Templates
Mustafa Burak Gurbuz
I. Rekik
26
26
0
28 Dec 2020
Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis
Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis
S. Gadgil
Qingyu Zhao
A. Pfefferbaum
E. Sullivan
Ehsan Adeli
K. Pohl
53
150
0
24 Mar 2020
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,811
0
25 Nov 2016
1