ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.01273
  4. Cited By
FedSynth: Gradient Compression via Synthetic Data in Federated Learning

FedSynth: Gradient Compression via Synthetic Data in Federated Learning

4 April 2022
Shengyuan Hu
Jack Goetz
Kshitiz Malik
Hongyuan Zhan
Zhe Liu
Yue Liu
    DD
    FedML
ArXivPDFHTML

Papers citing "FedSynth: Gradient Compression via Synthetic Data in Federated Learning"

26 / 26 papers shown
Title
WarmFed: Federated Learning with Warm-Start for Globalization and Personalization Via Personalized Diffusion Models
Tao Feng
Jie Zhang
Xiangjian Li
Rong Huang
Huashan Liu
Zhijie Wang
FedML
57
0
0
05 Mar 2025
HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs
HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs
Junying Chen
Zhenyang Cai
Ke Ji
X. Wang
Wanlong Liu
Rongsheng Wang
Jianye Hou
Benyou Wang
LRM
30
0
0
25 Dec 2024
Tackling Data Heterogeneity in Federated Time Series Forecasting
Tackling Data Heterogeneity in Federated Time Series Forecasting
Wei Yuan
Guanhua Ye
Xiangyu Zhao
Quoc Viet Hung Nguyen
Yang Cao
Hongzhi Yin
AI4TS
72
0
0
24 Nov 2024
Using Synthetic Data to Mitigate Unfairness and Preserve Privacy in Collaborative Machine Learning
Using Synthetic Data to Mitigate Unfairness and Preserve Privacy in Collaborative Machine Learning
Chia-Yuan Wu
Frank E. Curtis
Daniel P. Robinson
DD
33
0
0
14 Sep 2024
UDD: Dataset Distillation via Mining Underutilized Regions
UDD: Dataset Distillation via Mining Underutilized Regions
Shiguang Wang
Zhongyu Zhang
Jian Cheng
DD
28
0
0
29 Aug 2024
One-Shot Collaborative Data Distillation
One-Shot Collaborative Data Distillation
William Holland
Chandra Thapa
Sarah Ali Siddiqui
Wei Shao
S. Çamtepe
DD
FedML
32
0
0
05 Aug 2024
Speech Emotion Recognition under Resource Constraints with Data
  Distillation
Speech Emotion Recognition under Resource Constraints with Data Distillation
Yi Chang
Zhao Ren
Zhonghao Zhao
Thanh Tam Nguyen
Kun Qian
Tanja Schultz
Björn W. Schuller
24
0
0
21 Jun 2024
Federated Learning Optimization: A Comparative Study of Data and Model
  Exchange Strategies in Dynamic Networks
Federated Learning Optimization: A Comparative Study of Data and Model Exchange Strategies in Dynamic Networks
Alka Luqman
Yeow Wei Liang Brandon
Anupam Chattopadhyay
18
0
0
16 Jun 2024
One-Shot Federated Learning with Bayesian Pseudocoresets
One-Shot Federated Learning with Bayesian Pseudocoresets
Tim d'Hondt
Mykola Pechenizkiy
Robert Peharz
FedML
34
0
0
04 Jun 2024
Stable Diffusion-based Data Augmentation for Federated Learning with
  Non-IID Data
Stable Diffusion-based Data Augmentation for Federated Learning with Non-IID Data
Mahdi Morafah
M. Reisser
Bill Lin
Christos Louizos
FedML
32
5
0
13 May 2024
Unlocking the Potential of Federated Learning: The Symphony of Dataset
  Distillation via Deep Generative Latents
Unlocking the Potential of Federated Learning: The Symphony of Dataset Distillation via Deep Generative Latents
Yuqi Jia
Saeed Vahidian
Jingwei Sun
Jianyi Zhang
Vyacheslav Kungurtsev
Neil Zhenqiang Gong
Yiran Chen
FedML
DD
15
6
0
03 Dec 2023
Generalized Large-Scale Data Condensation via Various Backbone and
  Statistical Matching
Generalized Large-Scale Data Condensation via Various Backbone and Statistical Matching
Shitong Shao
Zeyuan Yin
Muxin Zhou
Xindong Zhang
Zhiqiang Shen
DD
27
21
0
29 Nov 2023
Embarassingly Simple Dataset Distillation
Embarassingly Simple Dataset Distillation
Yunzhen Feng
Ramakrishna Vedantam
Julia Kempe
DD
36
5
0
13 Nov 2023
Can pre-trained models assist in dataset distillation?
Can pre-trained models assist in dataset distillation?
Yao Lu
Xuguang Chen
Yuchen Zhang
Jianyang Gu
Tianle Zhang
Yifan Zhang
Xiaoniu Yang
Qi Xuan
Kai Wang
Yang You
DD
32
10
0
05 Oct 2023
A Survey of What to Share in Federated Learning: Perspectives on Model
  Utility, Privacy Leakage, and Communication Efficiency
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
32
23
0
20 Jul 2023
A Client-server Deep Federated Learning for Cross-domain Surgical Image
  Segmentation
A Client-server Deep Federated Learning for Cross-domain Surgical Image Segmentation
Ronast Subedi
Rebati Gaire
Sharib Ali
Anh Totti Nguyen
Danail Stoyanov
Binod Bhattarai
OOD
13
2
0
14 Jun 2023
Towards Efficient Deep Hashing Retrieval: Condensing Your Data via Feature-Embedding Matching
Towards Efficient Deep Hashing Retrieval: Condensing Your Data via Feature-Embedding Matching
Tao Feng
Jie Zhang
Peizheng Wang
Zhijie Wang
Shengyuan Pang
DD
46
0
0
29 May 2023
A Survey on Dataset Distillation: Approaches, Applications and Future
  Directions
A Survey on Dataset Distillation: Approaches, Applications and Future Directions
Jiahui Geng
Zongxiong Chen
Yuandou Wang
Herbert Woisetschlaeger
Sonja Schimmler
Ruben Mayer
Zhiming Zhao
Chunming Rong
DD
57
26
0
03 May 2023
Differentially Private Neural Tangent Kernels for Privacy-Preserving
  Data Generation
Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation
Yilin Yang
Kamil Adamczewski
Danica J. Sutherland
Xiaoxiao Li
Mijung Park
33
14
0
03 Mar 2023
Communication-efficient Federated Learning with Single-Step Synthetic
  Features Compressor for Faster Convergence
Communication-efficient Federated Learning with Single-Step Synthetic Features Compressor for Faster Convergence
Yuhao Zhou
Mingjia Shi
Yuanxi Li
Qing Ye
Yanan Sun
Jiancheng Lv
16
3
0
27 Feb 2023
Dataset Distillation: A Comprehensive Review
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
39
121
0
17 Jan 2023
A Comprehensive Survey of Dataset Distillation
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
31
87
0
13 Jan 2023
Data Distillation: A Survey
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
37
73
0
11 Jan 2023
Backdoor Attacks Against Dataset Distillation
Backdoor Attacks Against Dataset Distillation
Yugeng Liu
Zheng Li
Michael Backes
Yun Shen
Yang Zhang
DD
31
27
0
03 Jan 2023
Accelerating Dataset Distillation via Model Augmentation
Accelerating Dataset Distillation via Model Augmentation
Lei Zhang
Jie M. Zhang
Bowen Lei
Subhabrata Mukherjee
Xiang Pan
Bo-Lu Zhao
Caiwen Ding
Y. Li
Dongkuan Xu
DD
32
62
0
12 Dec 2022
FedPAQ: A Communication-Efficient Federated Learning Method with
  Periodic Averaging and Quantization
FedPAQ: A Communication-Efficient Federated Learning Method with Periodic Averaging and Quantization
Amirhossein Reisizadeh
Aryan Mokhtari
Hamed Hassani
Ali Jadbabaie
Ramtin Pedarsani
FedML
162
760
0
28 Sep 2019
1