ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.02027
  4. Cited By
A Survey on Dropout Methods and Experimental Verification in
  Recommendation
v1v2 (latest)

A Survey on Dropout Methods and Experimental Verification in Recommendation

IEEE Transactions on Knowledge and Data Engineering (TKDE), 2022
5 April 2022
Yongqian Li
Weizhi Ma
C. L. Philip Chen
Hao Fei
Yiqun Liu
Shaoping Ma
Yue Yang
ArXiv (abs)PDFHTML

Papers citing "A Survey on Dropout Methods and Experimental Verification in Recommendation"

4 / 4 papers shown
Selecting User Histories to Generate LLM Users for Cold-Start Item Recommendation
Selecting User Histories to Generate LLM Users for Cold-Start Item Recommendation
Nachiket Subbaraman
Jaskinder Sarai
Aniruddh Nath
Lichan Hong
Lukasz Heldt
Li Wei
Zhe Zhao
RALM
116
0
0
27 Nov 2025
R-Block: Regularized Block of Dropout for convolutional networks
R-Block: Regularized Block of Dropout for convolutional networks
Liqi Wang
Qiyang Hu
118
0
0
27 Jul 2023
Position: Tensor Networks are a Valuable Asset for Green AI
Position: Tensor Networks are a Valuable Asset for Green AIInternational Conference on Machine Learning (ICML), 2022
Eva Memmel
Clara Menzen
Jetze T. Schuurmans
Frederiek Wesel
Kim Batselier
312
9
0
25 May 2022
S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
  Mutual Information Maximization
S^3-Rec: Self-Supervised Learning for Sequential Recommendation with Mutual Information Maximization
Kun Zhou
Haibo Wang
Wayne Xin Zhao
Yutao Zhu
Sirui Wang
Fuzheng Zhang
Zhongyuan Wang
Ji-Rong Wen
363
1,023
0
18 Aug 2020
1
Page 1 of 1