Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2204.02027
Cited By
v1
v2 (latest)
A Survey on Dropout Methods and Experimental Verification in Recommendation
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2022
5 April 2022
Yongqian Li
Weizhi Ma
C. L. Philip Chen
Hao Fei
Yiqun Liu
Shaoping Ma
Yue Yang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Survey on Dropout Methods and Experimental Verification in Recommendation"
4 / 4 papers shown
Selecting User Histories to Generate LLM Users for Cold-Start Item Recommendation
Nachiket Subbaraman
Jaskinder Sarai
Aniruddh Nath
Lichan Hong
Lukasz Heldt
Li Wei
Zhe Zhao
RALM
116
0
0
27 Nov 2025
R-Block: Regularized Block of Dropout for convolutional networks
Liqi Wang
Qiyang Hu
118
0
0
27 Jul 2023
Position: Tensor Networks are a Valuable Asset for Green AI
International Conference on Machine Learning (ICML), 2022
Eva Memmel
Clara Menzen
Jetze T. Schuurmans
Frederiek Wesel
Kim Batselier
312
9
0
25 May 2022
S^3-Rec: Self-Supervised Learning for Sequential Recommendation with Mutual Information Maximization
Kun Zhou
Haibo Wang
Wayne Xin Zhao
Yutao Zhu
Sirui Wang
Fuzheng Zhang
Zhongyuan Wang
Ji-Rong Wen
363
1,023
0
18 Aug 2020
1
Page 1 of 1