ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.03178
  4. Cited By
3M: Multi-loss, Multi-path and Multi-level Neural Networks for speech
  recognition

3M: Multi-loss, Multi-path and Multi-level Neural Networks for speech recognition

7 April 2022
Zhao You
Shulin Feng
Dan Su
Dong Yu
ArXivPDFHTML

Papers citing "3M: Multi-loss, Multi-path and Multi-level Neural Networks for speech recognition"

4 / 4 papers shown
Title
eMoE: Task-aware Memory Efficient Mixture-of-Experts-Based (MoE) Model Inference
Suraiya Tairin
Shohaib Mahmud
Haiying Shen
Anand Iyer
MoE
126
0
0
10 Mar 2025
U2++ MoE: Scaling 4.7x parameters with minimal impact on RTF
U2++ MoE: Scaling 4.7x parameters with minimal impact on RTF
Xingchen Song
Di Wu
Binbin Zhang
Dinghao Zhou
Zhendong Peng
Bo Dang
Fuping Pan
Chao Yang
MoE
31
5
0
25 Apr 2024
Zipformer: A faster and better encoder for automatic speech recognition
Zipformer: A faster and better encoder for automatic speech recognition
Zengwei Yao
Liyong Guo
Xiaoyu Yang
Wei Kang
Fangjun Kuang
Yifan Yang
Zengrui Jin
Long Lin
Daniel Povey
VLM
25
64
0
17 Oct 2023
CIF-T: A Novel CIF-based Transducer Architecture for Automatic Speech
  Recognition
CIF-T: A Novel CIF-based Transducer Architecture for Automatic Speech Recognition
Tian-Hao Zhang
Dinghao Zhou
Guiping Zhong
Jiaming Zhou
Baoxiang Li
10
3
0
26 Jul 2023
1