ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.03855
  4. Cited By
Hierarchical Softmax for End-to-End Low-resource Multilingual Speech
  Recognition

Hierarchical Softmax for End-to-End Low-resource Multilingual Speech Recognition

8 April 2022
Qianying Liu
Zhuo Gong
Zhengdong Yang
Yuhang Yang
Sheng Li
Chenchen Ding
N. Minematsu
Hao-Ming Huang
Fei Cheng
Chenhui Chu
Sadao Kurohashi
ArXivPDFHTML

Papers citing "Hierarchical Softmax for End-to-End Low-resource Multilingual Speech Recognition"

2 / 2 papers shown
Title
BLR-MoE: Boosted Language-Routing Mixture of Experts for Domain-Robust Multilingual E2E ASR
BLR-MoE: Boosted Language-Routing Mixture of Experts for Domain-Robust Multilingual E2E ASR
Guodong Ma
Wenxuan Wang
Lifeng Zhou
Yuting Yang
Yuke Li
Binbin Du
MoE
79
0
0
22 Jan 2025
Language-universal phonetic encoder for low-resource speech recognition
Language-universal phonetic encoder for low-resource speech recognition
Siyuan Feng
Ming Tu
Rui Xia
Chuanzeng Huang
Yuxuan Wang
39
2
0
19 May 2023
1