ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.04004
  4. Cited By
Hierarchical and Multi-Scale Variational Autoencoder for Diverse and
  Natural Non-Autoregressive Text-to-Speech

Hierarchical and Multi-Scale Variational Autoencoder for Diverse and Natural Non-Autoregressive Text-to-Speech

8 April 2022
Jaesung Bae
Jinhyeok Yang
Taejun Bak
Young-Sun Joo
    DiffM
ArXivPDFHTML

Papers citing "Hierarchical and Multi-Scale Variational Autoencoder for Diverse and Natural Non-Autoregressive Text-to-Speech"

2 / 2 papers shown
Title
Learning utterance-level representations through token-level acoustic
  latents prediction for Expressive Speech Synthesis
Learning utterance-level representations through token-level acoustic latents prediction for Expressive Speech Synthesis
Karolos Nikitaras
Konstantinos Klapsas
Nikolaos Ellinas
Georgia Maniati
June Sig Sung
Inchul Hwang
S. Raptis
Aimilios Chalamandaris
Pirros Tsiakoulis
14
0
0
01 Nov 2022
Hierarchical prosody modeling and control in non-autoregressive parallel
  neural TTS
Hierarchical prosody modeling and control in non-autoregressive parallel neural TTS
T. Raitio
Jiangchuan Li
Shreyas Seshadri
32
22
0
06 Oct 2021
1