ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.05011
  4. Cited By
FederatedScope: A Flexible Federated Learning Platform for Heterogeneity

FederatedScope: A Flexible Federated Learning Platform for Heterogeneity

11 April 2022
Yuexiang Xie
Zhen Wang
Dawei Gao
Daoyuan Chen
Liuyi Yao
Weirui Kuang
Yaliang Li
Bolin Ding
Jingren Zhou
    FedML
ArXivPDFHTML

Papers citing "FederatedScope: A Flexible Federated Learning Platform for Heterogeneity"

18 / 18 papers shown
Title
Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
Zilinghan Li
Shilan He
Ze Yang
Minseok Ryu
Kibaek Kim
Ravi K. Madduri
FedML
48
5
0
17 Sep 2024
FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model
FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model
Feijie Wu
Zitao Li
Yaliang Li
Bolin Ding
Jing Gao
34
41
0
25 Jun 2024
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Personalized Federated Learning of Probabilistic Models: A PAC-Bayesian Approach
Mahrokh Ghoddousi Boroujeni
Andreas Krause
Giancarlo Ferrari-Trecate
FedML
32
3
0
16 Jan 2024
Enabling End-to-End Secure Federated Learning in Biomedical Research on
  Heterogeneous Computing Environments with APPFLx
Enabling End-to-End Secure Federated Learning in Biomedical Research on Heterogeneous Computing Environments with APPFLx
Trung-Hieu Hoang
Jordan D. Fuhrman
Ravi K. Madduri
Miao Li
Pranshu Chaturvedi
...
Kibaek Kim
Minseok Ryu
Ryan Chard
Eliu A. Huerta
Maryellen L. Giger
24
5
0
14 Dec 2023
When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions
When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions
Weiming Zhuang
Chen Chen
Lingjuan Lyu
C. L. P. Chen
Yaochu Jin
Lingjuan Lyu
AIFin
AI4CE
88
85
0
27 Jun 2023
HPN: Personalized Federated Hyperparameter Optimization
HPN: Personalized Federated Hyperparameter Optimization
Anda Cheng
Zhen Wang
Yaliang Li
Jianwei Cheng
19
1
0
11 Apr 2023
FS-Real: Towards Real-World Cross-Device Federated Learning
FS-Real: Towards Real-World Cross-Device Federated Learning
Daoyuan Chen
Dawei Gao
Yuexiang Xie
Xuchen Pan
Zitao Li
Yaliang Li
Bolin Ding
Jingren Zhou
109
26
0
23 Mar 2023
FederatedTrust: A Solution for Trustworthy Federated Learning
FederatedTrust: A Solution for Trustworthy Federated Learning
Pedro Miguel Sánchez Sánchez
Alberto Huertas Celdrán
Ning Xie
Gérome Bovet
Gregorio Martínez Pérez
Burkhard Stiller
28
21
0
20 Feb 2023
Revisiting Personalized Federated Learning: Robustness Against Backdoor
  Attacks
Revisiting Personalized Federated Learning: Robustness Against Backdoor Attacks
Zeyu Qin
Liuyi Yao
Daoyuan Chen
Yaliang Li
Bolin Ding
Minhao Cheng
FedML
25
25
0
03 Feb 2023
Decentralized Federated Learning: Fundamentals, State of the Art,
  Frameworks, Trends, and Challenges
Decentralized Federated Learning: Fundamentals, State of the Art, Frameworks, Trends, and Challenges
Enrique Tomás Martínez Beltrán
Mario Quiles Pérez
Pedro Miguel Sánchez Sánchez
Sergio López Bernal
Gérome Bovet
M. Pérez
Gregorio Martínez Pérez
Alberto Huertas Celdrán
FedML
18
221
0
15 Nov 2022
UniFed: All-In-One Federated Learning Platform to Unify Open-Source
  Frameworks
UniFed: All-In-One Federated Learning Platform to Unify Open-Source Frameworks
Xiaoyuan Liu
Tianneng Shi
Chulin Xie
Qinbin Li
Kangping Hu
...
The-Anh Vu-Le
Zhen Huang
Arash Nourian
Bo-wen Li
D. Song
FedML
19
8
0
21 Jul 2022
FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient
  Package for Federated Graph Learning
FederatedScope-GNN: Towards a Unified, Comprehensive and Efficient Package for Federated Graph Learning
Zhen Wang
Weirui Kuang
Yuexiang Xie
Liuyi Yao
Yaliang Li
Bolin Ding
Jingren Zhou
FedML
13
77
0
12 Apr 2022
Papaya: Practical, Private, and Scalable Federated Learning
Papaya: Practical, Private, and Scalable Federated Learning
Dzmitry Huba
John Nguyen
Kshitiz Malik
Ruiyu Zhu
Michael G. Rabbat
...
H. Srinivas
Kaikai Wang
Anthony Shoumikhin
Jesik Min
Mani Malek
FedML
99
137
0
08 Nov 2021
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
173
411
0
14 Jul 2021
Towards Personalized Federated Learning
Towards Personalized Federated Learning
A. Tan
Han Yu
Li-zhen Cui
Qiang Yang
FedML
AI4CE
183
840
0
01 Mar 2021
FedBN: Federated Learning on Non-IID Features via Local Batch
  Normalization
FedBN: Federated Learning on Non-IID Features via Local Batch Normalization
Xiaoxiao Li
Meirui Jiang
Xiaofei Zhang
Michael Kamp
Qi Dou
OOD
FedML
168
786
0
15 Feb 2021
Federated Bayesian Optimization via Thompson Sampling
Federated Bayesian Optimization via Thompson Sampling
Zhongxiang Dai
K. H. Low
Patrick Jaillet
FedML
81
109
0
20 Oct 2020
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
162
564
0
27 Jul 2020
1