ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.07120
  4. Cited By
Exploring Dual Encoder Architectures for Question Answering
v1v2 (latest)

Exploring Dual Encoder Architectures for Question Answering

Conference on Empirical Methods in Natural Language Processing (EMNLP), 2022
14 April 2022
Zhe Dong
Jianmo Ni
Daniel M. Bikel
Enrique Alfonseca
Yuanjin Wang
Chen Qu
I. Zitouni
ArXiv (abs)PDFHTML

Papers citing "Exploring Dual Encoder Architectures for Question Answering"

14 / 14 papers shown
Contextual Tokenization for Graph Inverted Indices
Contextual Tokenization for Graph Inverted Indices
Pritish Chakraborty
Indradyumna Roy
Soumen Chakrabarti
A. De
219
0
0
26 Oct 2025
MTMD: A Multi-Task Multi-Domain Framework for Unified Ad Lightweight Ranking at Pinterest
MTMD: A Multi-Task Multi-Domain Framework for Unified Ad Lightweight Ranking at Pinterest
Xiao Yang
Peifeng Yin
Abe Engle
Jinfeng Zhuang
Ling Leng
60
0
0
10 Oct 2025
An Investigation of Visual Foundation Models Robustness
An Investigation of Visual Foundation Models Robustness
Sandeep Gupta
Roberto Passerone
AAML
124
0
0
22 Aug 2025
Entity Image and Mixed-Modal Image Retrieval Datasets
Entity Image and Mixed-Modal Image Retrieval Datasets
Cristian-Ioan Blaga
Paul Suganthan
Sahil Dua
Krishna Srinivasan
Enrique Alfonseca
Peter Dornbach
Tom Duerig
I. Zitouni
Zhe Dong
VLM
197
0
0
02 Jun 2025
On the Scaling of Robustness and Effectiveness in Dense Retrieval
On the Scaling of Robustness and Effectiveness in Dense RetrievalAnnual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2025
Yu-an Liu
Ruqing Zhang
Jiafeng Guo
Maarten de Rijke
Yixing Fan
Xueqi Cheng
155
1
0
30 May 2025
QAEncoder: Towards Aligned Representation Learning in Question Answering Systems
QAEncoder: Towards Aligned Representation Learning in Question Answering SystemsAnnual Meeting of the Association for Computational Linguistics (ACL), 2024
Zhengren Wang
Qinhan Yu
Shida Wei
Zhiyu Li
Feiyu Xiong
Xiaoxing Wang
Pengnian Qi
Hao Liang
Wentao Zhang
RALM
483
4
0
30 Sep 2024
Unsupervised Text Representation Learning via Instruction-Tuning for
  Zero-Shot Dense Retrieval
Unsupervised Text Representation Learning via Instruction-Tuning for Zero-Shot Dense Retrieval
Qiuhai Zeng
Zimeng Qiu
Dae Yon Hwang
Xin He
William M. Campbell
RALM
182
1
0
24 Sep 2024
Introducing a new hyper-parameter for RAG: Context Window Utilization
Introducing a new hyper-parameter for RAG: Context Window Utilization
Kush Juvekar
A. Purwar
207
13
0
29 Jul 2024
Mafin: Enhancing Black-Box Embeddings with Model Augmented Fine-Tuning
Mafin: Enhancing Black-Box Embeddings with Model Augmented Fine-Tuning
Mingtian Zhang
Shawn Lan
Peter Hayes
David Barber
444
4
0
19 Feb 2024
Query Encoder Distillation via Embedding Alignment is a Strong Baseline
  Method to Boost Dense Retriever Online Efficiency
Query Encoder Distillation via Embedding Alignment is a Strong Baseline Method to Boost Dense Retriever Online Efficiency
Yuxuan Wang
Hong Lyu
147
4
0
05 Jun 2023
SamToNe: Improving Contrastive Loss for Dual Encoder Retrieval Models
  with Same Tower Negatives
SamToNe: Improving Contrastive Loss for Dual Encoder Retrieval Models with Same Tower NegativesAnnual Meeting of the Association for Computational Linguistics (ACL), 2023
Fedor Moiseev
Gustavo Hernández Ábrego
Peter Dornbach
I. Zitouni
Enrique Alfonseca
Zhe Dong
184
9
0
05 Jun 2023
PUNR: Pre-training with User Behavior Modeling for News Recommendation
PUNR: Pre-training with User Behavior Modeling for News RecommendationConference on Empirical Methods in Natural Language Processing (EMNLP), 2023
Guangyuan Ma
Hongtao Liu
Xing Wu
Wanhui Qian
Zhepeng Lv
Q. Yang
Songlin Hu
SSL
223
4
0
25 Apr 2023
CoT-MoTE: Exploring ConTextual Masked Auto-Encoder Pre-training with
  Mixture-of-Textual-Experts for Passage Retrieval
CoT-MoTE: Exploring ConTextual Masked Auto-Encoder Pre-training with Mixture-of-Textual-Experts for Passage Retrieval
Guangyuan Ma
Xing Wu
Peng Wang
Songlin Hu
MoERALM
180
9
0
20 Apr 2023
Modeling Sequential Sentence Relation to Improve Cross-lingual Dense Retrieval
Modeling Sequential Sentence Relation to Improve Cross-lingual Dense RetrievalInternational Conference on Learning Representations (ICLR), 2023
Shunyu Zhang
Yaobo Liang
Ming Gong
Daxin Jiang
Nan Duan
367
8
0
03 Feb 2023
1