Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.09157
Cited By
Multifidelity Deep Operator Networks For Data-Driven and Physics-Informed Problems
19 April 2022
Amanda A. Howard
M. Perego
G. Karniadakis
P. Stinis
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multifidelity Deep Operator Networks For Data-Driven and Physics-Informed Problems"
8 / 8 papers shown
Title
Mechanical Characterization and Inverse Design of Stochastic Architected Metamaterials Using Neural Operators
Hanxun Jin
Enrui Zhang
Boyu Zhang
Sridhar Krishnaswamy
George Karniadakis
Horacio D. Espinosa
AI4CE
24
4
0
23 Nov 2023
Branched Latent Neural Maps
M. Salvador
Alison Lesley Marsden
30
4
0
04 Aug 2023
A Bi-fidelity DeepONet Approach for Modeling Uncertain and Degrading Hysteretic Systems
Subhayan De
P. Brewick
24
0
0
25 Apr 2023
Deep neural operators can serve as accurate surrogates for shape optimization: A case study for airfoils
K. Shukla
Vivek Oommen
Ahmad Peyvan
Michael Penwarden
L. Bravo
A. Ghoshal
Robert M. Kirby
George Karniadakis
33
19
0
02 Feb 2023
Multi-fidelity wavelet neural operator with application to uncertainty quantification
A. Thakur
Tapas Tripura
S. Chakraborty
27
12
0
11 Aug 2022
Multi-fidelity surrogate modeling using long short-term memory networks
Paolo Conti
Mengwu Guo
Andrea Manzoni
J. Hesthaven
AI4CE
28
48
0
05 Aug 2022
Improved architectures and training algorithms for deep operator networks
Sifan Wang
Hanwen Wang
P. Perdikaris
AI4CE
42
104
0
04 Oct 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,281
0
18 Oct 2020
1