v1v2 (latest)
The Wisdom of Crowds: Temporal Progressive Attention for Early Action
Prediction
Computer Vision and Pattern Recognition (CVPR), 2022
Dima Damen
- AI4TSEgoVEDL
Abstract
Early action prediction deals with inferring the ongoing action from partially-observed videos, typically at the outset of the video. We propose a bottleneck-based attention model that captures the evolution of the action, through progressive sampling over fine-to-coarse scales. Our proposed Temporal Progressive (TemPr) model is composed of multiple attention towers, one for each scale. The predicted action label is based on the collective agreement considering confidences of these towers. Extensive experiments over four video datasets showcase state-of-the-art performance on the task of Early Action Prediction across a range of encoder architectures. We demonstrate the effectiveness and consistency of TemPr through detailed ablations.
View on arXivComments on this paper
