ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.13545
  4. Cited By
Predicting Cellular Responses to Novel Drug Perturbations at a
  Single-Cell Resolution

Predicting Cellular Responses to Novel Drug Perturbations at a Single-Cell Resolution

28 April 2022
Leon Hetzel
Simon Böhm
Niki Kilbertus
Stephan Günnemann
M. Lotfollahi
Fabian J. Theis
ArXivPDFHTML

Papers citing "Predicting Cellular Responses to Novel Drug Perturbations at a Single-Cell Resolution"

16 / 16 papers shown
Title
PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models
PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models
Alejandro Velez-Arce
Marinka Zitnik
24
0
0
08 May 2025
Towards generalizable single-cell perturbation modeling via the Conditional Monge Gap
Towards generalizable single-cell perturbation modeling via the Conditional Monge Gap
Alice Driessen
Benedek Harsanyi
Marianna Rapsomaniki
Jannis Born
AI4CE
34
0
0
11 Apr 2025
In-silico biological discovery with large perturbation models
In-silico biological discovery with large perturbation models
Djordje Miladinovic
Tobias Hoppe
Mathieu Chevalley
Andreas Georgiou
Lachlan Stuart
Arash Mehrjou
M. Bantscheff
Bernhard Schölkopf
Patrick Schwab
36
0
0
30 Mar 2025
Towards generalization of drug response prediction to single cells and patients utilizing importance-aware multi-source domain transfer learning
Towards generalization of drug response prediction to single cells and patients utilizing importance-aware multi-source domain transfer learning
Wei Duan
Hui Liu
Judong Luo
MedIm
30
1
0
08 Jan 2025
Efficient Fine-Tuning of Single-Cell Foundation Models Enables Zero-Shot Molecular Perturbation Prediction
Efficient Fine-Tuning of Single-Cell Foundation Models Enables Zero-Shot Molecular Perturbation Prediction
Sepideh Maleki
Jan-Christian Huetter
Kangway V Chuang
Gabriele Scalia
Tommaso Biancalani
Tommaso Biancalani
AI4CE
90
2
0
18 Dec 2024
Generative Intervention Models for Causal Perturbation Modeling
Generative Intervention Models for Causal Perturbation Modeling
Nora Schneider
Lars Lorch
Niki Kilbertus
Bernhard Schölkopf
Andreas Krause
83
2
0
21 Nov 2024
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Yanshuo Chen
Zhengmian Hu
Wei Chen
Heng Huang
OT
47
2
0
01 Nov 2024
Learning Identifiable Factorized Causal Representations of Cellular
  Responses
Learning Identifiable Factorized Causal Representations of Cellular Responses
Haiyi Mao
Romain Lopez
Kai Liu
Jan-Christian Huetter
David Richmond
Panayiotis Benos
Lin Qiu
CML
27
3
0
29 Oct 2024
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Lazar Atanackovic
Xi Zhang
Brandon Amos
Mathieu Blanchette
Leo J. Lee
Yoshua Bengio
Alexander Tong
Kirill Neklyudov
39
5
0
26 Aug 2024
Cell Morphology-Guided Small Molecule Generation with GFlowNets
Cell Morphology-Guided Small Molecule Generation with GFlowNets
Stephen Zhewen Lu
Ziqing Lu
Ehsan Hajiramezanali
Tommaso Biancalani
Yoshua Bengio
Gabriele Scalia
Michał Koziarski
38
2
0
09 Aug 2024
PhenDiff: Revealing Subtle Phenotypes with Diffusion Models in Real
  Images
PhenDiff: Revealing Subtle Phenotypes with Diffusion Models in Real Images
Anis Bourou
Thomas Boyer
Kévin Daupin
Véronique Dubreuil
A. D. Thonel
Valérie Mezger
Auguste Genovesio
DiffM
MedIm
8
1
0
13 Dec 2023
Cross-domain feature disentanglement for interpretable modeling of tumor
  microenvironment impact on drug response
Cross-domain feature disentanglement for interpretable modeling of tumor microenvironment impact on drug response
Jia Zhai
Hui Liu
19
0
0
15 Nov 2023
Entropic (Gromov) Wasserstein Flow Matching with GENOT
Entropic (Gromov) Wasserstein Flow Matching with GENOT
Dominik Klein
Théo Uscidda
Fabian J. Theis
Marco Cuturi
OT
32
3
0
13 Oct 2023
MAGNet: Motif-Agnostic Generation of Molecules from Shapes
MAGNet: Motif-Agnostic Generation of Molecules from Shapes
Leon Hetzel
Johanna Sommer
Bastian Alexander Rieck
Fabian J. Theis
Stephan Günnemann
23
6
0
30 May 2023
The power of motifs as inductive bias for learning molecular
  distributions
The power of motifs as inductive bias for learning molecular distributions
Johanna Sommer
Leon Hetzel
David Lüdke
Fabian J. Theis
Stephan Günnemann
25
5
0
04 Apr 2023
Deep Learning in Single-Cell Analysis
Deep Learning in Single-Cell Analysis
Dylan Molho
Jiayuan Ding
Zhaoheng Li
Haifang Wen
Wenzhuo Tang
...
P. Danaher
Robert Yang
Y. Lei
Yuying Xie
Jiliang Tang
28
22
0
22 Oct 2022
1