Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.13650
Cited By
Unlocking High-Accuracy Differentially Private Image Classification through Scale
28 April 2022
Soham De
Leonard Berrada
Jamie Hayes
Samuel L. Smith
Borja Balle
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unlocking High-Accuracy Differentially Private Image Classification through Scale"
50 / 54 papers shown
Title
Differentially Private 2D Human Pose Estimation
Kaushik Bhargav Sivangi
Idris Zakariyya
Paul Henderson
F. Deligianni
76
0
0
14 Apr 2025
DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
Chengkun Wei
Weixian Li
Chen Gong
Wenzhi Chen
48
0
0
29 Mar 2025
DPImageBench: A Unified Benchmark for Differentially Private Image Synthesis
Chen Gong
Kecen Li
Zinan Lin
Tianhao Wang
47
3
0
18 Mar 2025
Balls-and-Bins Sampling for DP-SGD
Lynn Chua
Badih Ghazi
Charlie Harrison
Ethan Leeman
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Amer Sinha
Chiyuan Zhang
80
3
0
21 Dec 2024
Adversarial Sample-Based Approach for Tighter Privacy Auditing in Final Model-Only Scenarios
Sangyeon Yoon
Wonje Jeung
Albert No
85
0
0
02 Dec 2024
The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD
Thomas Steinke
Milad Nasr
Arun Ganesh
Borja Balle
Christopher A. Choquette-Choo
Matthew Jagielski
Jamie Hayes
Abhradeep Thakurta
Adam Smith
Andreas Terzis
23
7
0
08 Oct 2024
DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction
Xinwei Zhang
Zhiqi Bu
Borja Balle
Mingyi Hong
Meisam Razaviyayn
Vahab Mirrokni
74
2
0
04 Oct 2024
Differentially Private Parameter-Efficient Fine-tuning for Large ASR Models
Hongbin Liu
Lun Wang
Om Thakkar
Abhradeep Thakurta
Arun Narayanan
23
0
0
02 Oct 2024
Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
Kristian Schwethelm
Johannes Kaiser
Jonas Kuntzer
Mehmet Yigitsoy
Daniel Rueckert
Georgios Kaissis
27
0
0
01 Oct 2024
Training Large ASR Encoders with Differential Privacy
Geeticka Chauhan
Steve Chien
Om Thakkar
Abhradeep Thakurta
Arun Narayanan
15
1
0
21 Sep 2024
Differentially Private Kernel Density Estimation
Erzhi Liu
Jerry Yao-Chieh Hu
Alex Reneau
Zhao Song
Han Liu
56
3
0
03 Sep 2024
Differential Private Stochastic Optimization with Heavy-tailed Data: Towards Optimal Rates
Puning Zhao
Jiafei Wu
Zhe Liu
Chong Wang
Rongfei Fan
Qingming Li
40
1
0
19 Aug 2024
Better Gaussian Mechanism using Correlated Noise
Christian Janos Lebeda
36
2
0
13 Aug 2024
GCON: Differentially Private Graph Convolutional Network via Objective Perturbation
Jianxin Wei
Yizheng Zhu
Xiaokui Xiao
Ergute Bao
Yin Yang
Kuntai Cai
Beng Chin Ooi
AAML
27
0
0
06 Jul 2024
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy
Georgios Kaissis
Stefan Kolek
Borja Balle
Jamie Hayes
Daniel Rueckert
40
4
0
13 Jun 2024
Noise-Aware Differentially Private Regression via Meta-Learning
Ossi Raisa
Stratis Markou
Matthew Ashman
W. Bruinsma
Marlon Tobaben
Antti Honkela
Richard E. Turner
57
1
0
12 Jun 2024
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition
C. Lebeda
Matthew Regehr
Gautam Kamath
Thomas Steinke
31
9
0
27 May 2024
You Can Use But Cannot Recognize: Preserving Visual Privacy in Deep Neural Networks
Qiushi Li
Yan Zhang
Ju Ren
Qi Li
Yaoxue Zhang
AAML
PICV
31
22
0
05 Apr 2024
Private Fine-tuning of Large Language Models with Zeroth-order Optimization
Xinyu Tang
Ashwinee Panda
Milad Nasr
Saeed Mahloujifar
Prateek Mittal
44
18
0
09 Jan 2024
DP-OPT: Make Large Language Model Your Privacy-Preserving Prompt Engineer
Junyuan Hong
Jiachen T. Wang
Chenhui Zhang
Zhangheng Li
Bo-wen Li
Zhangyang Wang
36
29
0
27 Nov 2023
DP-TBART: A Transformer-based Autoregressive Model for Differentially Private Tabular Data Generation
Rodrigo Castellon
Achintya Gopal
Brian Bloniarz
David S. Rosenberg
4
7
0
19 Jul 2023
Bounding data reconstruction attacks with the hypothesis testing interpretation of differential privacy
Georgios Kaissis
Jamie Hayes
Alexander Ziller
Daniel Rueckert
AAML
16
11
0
08 Jul 2023
PILLAR: How to make semi-private learning more effective
Francesco Pinto
Yaxian Hu
Fanny Yang
Amartya Sanyal
25
11
0
06 Jun 2023
Differentially Private Synthetic Data via Foundation Model APIs 1: Images
Zi-Han Lin
Sivakanth Gopi
Janardhan Kulkarni
Harsha Nori
Sergey Yekhanin
33
36
0
24 May 2023
Bounding Training Data Reconstruction in DP-SGD
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
15
39
0
14 Feb 2023
Private GANs, Revisited
Alex Bie
Gautam Kamath
Guojun Zhang
4
14
0
06 Feb 2023
An Empirical Analysis of Fairness Notions under Differential Privacy
Anderson Santana de Oliveira
Caelin Kaplan
Khawla Mallat
Tanmay Chakraborty
FedML
8
7
0
06 Feb 2023
Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging
Soroosh Tayebi Arasteh
Alexander Ziller
Christiane Kuhl
Marcus R. Makowski
S. Nebelung
R. Braren
Daniel Rueckert
Daniel Truhn
Georgios Kaissis
MedIm
19
17
0
03 Feb 2023
Straggler-Resilient Differentially-Private Decentralized Learning
Yauhen Yakimenka
Chung-Wei Weng
Hsuan-Yin Lin
E. Rosnes
J. Kliewer
19
6
0
06 Dec 2022
Differentially Private Adaptive Optimization with Delayed Preconditioners
Tian Li
Manzil Zaheer
Ziyu Liu
Sashank J. Reddi
H. B. McMahan
Virginia Smith
26
10
0
01 Dec 2022
Differentially Private Image Classification from Features
Harsh Mehta
Walid Krichene
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
24
7
0
24 Nov 2022
Private Ad Modeling with DP-SGD
Carson E. Denison
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Krishnagiri Narra
Amer Sinha
A. Varadarajan
Chiyuan Zhang
17
14
0
21 Nov 2022
Learning to Generate Image Embeddings with User-level Differential Privacy
Zheng Xu
Maxwell D. Collins
Yuxiao Wang
Liviu Panait
Sewoong Oh
S. Augenstein
Ting Liu
Florian Schroff
H. B. McMahan
FedML
20
29
0
20 Nov 2022
Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning
Christopher A. Choquette-Choo
H. B. McMahan
Keith Rush
Abhradeep Thakurta
15
43
0
12 Nov 2022
Distributed DP-Helmet: Scalable Differentially Private Non-interactive Averaging of Single Layers
Moritz Kirschte
Sebastian Meiser
Saman Ardalan
Esfandiar Mohammadi
FedML
19
0
0
03 Nov 2022
Synthetic Text Generation with Differential Privacy: A Simple and Practical Recipe
Xiang Yue
Huseyin A. Inan
Xuechen Li
Girish Kumar
Julia McAnallen
Hoda Shajari
Huan Sun
David Levitan
Robert Sim
17
79
0
25 Oct 2022
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
Jianxin Wei
Ergute Bao
X. Xiao
Y. Yang
37
20
0
18 Oct 2022
Fine-Tuning with Differential Privacy Necessitates an Additional Hyperparameter Search
Yannis Cattan
Christopher A. Choquette-Choo
Nicolas Papernot
Abhradeep Thakurta
13
20
0
05 Oct 2022
Differentially Private Optimization on Large Model at Small Cost
Zhiqi Bu
Yu-Xiang Wang
Sheng Zha
George Karypis
25
52
0
30 Sep 2022
When Does Differentially Private Learning Not Suffer in High Dimensions?
Xuechen Li
Daogao Liu
Tatsunori Hashimoto
Huseyin A. Inan
Janardhan Kulkarni
Y. Lee
Abhradeep Thakurta
15
58
0
01 Jul 2022
Beyond Uniform Lipschitz Condition in Differentially Private Optimization
Rudrajit Das
Satyen Kale
Zheng Xu
Tong Zhang
Sujay Sanghavi
19
17
0
21 Jun 2022
LIA: Privacy-Preserving Data Quality Evaluation in Federated Learning Using a Lazy Influence Approximation
Ljubomir Rokvic
Panayiotis Danassis
Sai Praneeth Karimireddy
Boi Faltings
TDI
15
1
0
23 May 2022
Scalable and Efficient Training of Large Convolutional Neural Networks with Differential Privacy
Zhiqi Bu
J. Mao
Shiyun Xu
131
47
0
21 May 2022
Improving Differentially Private SGD via Randomly Sparsified Gradients
Junyi Zhu
Matthew B. Blaschko
10
5
0
01 Dec 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
344
0
13 Oct 2021
Not all noise is accounted equally: How differentially private learning benefits from large sampling rates
Friedrich Dörmann
Osvald Frisk
L. Andersen
Christian Fischer Pedersen
FedML
44
25
0
12 Oct 2021
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
123
119
0
07 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
144
348
0
25 Sep 2021
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
91
110
0
25 Feb 2021
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
220
510
0
11 Feb 2021
1
2
Next