ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2204.13957
  4. Cited By
PIE: a Parameter and Inference Efficient Solution for Large Scale
  Knowledge Graph Embedding Reasoning

PIE: a Parameter and Inference Efficient Solution for Large Scale Knowledge Graph Embedding Reasoning

29 April 2022
Linlin Chao
Xiexiong Lin
Taifeng Wang
Wei Chu
ArXivPDFHTML

Papers citing "PIE: a Parameter and Inference Efficient Solution for Large Scale Knowledge Graph Embedding Reasoning"

4 / 4 papers shown
Title
From Wide to Deep: Dimension Lifting Network for Parameter-efficient
  Knowledge Graph Embedding
From Wide to Deep: Dimension Lifting Network for Parameter-efficient Knowledge Graph Embedding
Borui Cai
Yong Xiang
Longxiang Gao
Di Wu
Heng Zhang
Jiongdao Jin
Tom H. Luan
42
1
0
22 Mar 2023
BESS: Balanced Entity Sampling and Sharing for Large-Scale Knowledge
  Graph Completion
BESS: Balanced Entity Sampling and Sharing for Large-Scale Knowledge Graph Completion
A. Cattaneo
Daniel Justus
Harry Mellor
Douglas Orr
Jérôme Maloberti
Ziqiang Liu
Thorin Farnsworth
Andrew Fitzgibbon
Bla.zej Banaszewski
Carlo Luschi
35
4
0
22 Nov 2022
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
345
1,960
0
09 Jun 2018
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
266
3,258
0
24 Nov 2016
1