ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.00186
  4. Cited By
Reliable Label Correction is a Good Booster When Learning with Extremely
  Noisy Labels

Reliable Label Correction is a Good Booster When Learning with Extremely Noisy Labels

30 April 2022
Kaidi Wang
Xiang Peng
Shuo Yang
Jianfei Yang
Zheng Hua Zhu
Xinchao Wang
Yang You
    NoLa
ArXivPDFHTML

Papers citing "Reliable Label Correction is a Good Booster When Learning with Extremely Noisy Labels"

1 / 1 papers shown
Title
Divide to Adapt: Mitigating Confirmation Bias for Domain Adaptation of
  Black-Box Predictors
Divide to Adapt: Mitigating Confirmation Bias for Domain Adaptation of Black-Box Predictors
Jianfei Yang
Xiangyu Peng
Kaidi Wang
Zheng Hua Zhu
Jiashi Feng
Lihua Xie
Yang You
32
27
0
28 May 2022
1