ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.01753
  4. Cited By
Self-focusing virtual screening with active design space pruning

Self-focusing virtual screening with active design space pruning

3 May 2022
David E. Graff
Matteo Aldeghi
Joseph A. Morrone
K. E. Jordan
Edward O. Pyzer-Knapp
Connor W. Coley
ArXivPDFHTML

Papers citing "Self-focusing virtual screening with active design space pruning"

9 / 9 papers shown
Title
Understanding active learning of molecular docking and its applications
Understanding active learning of molecular docking and its applications
Jeonghyeon Kim
Juno Nam
Seongok Ryu
24
0
0
14 Jun 2024
Scoreformer: A Surrogate Model For Large-Scale Prediction of Docking
  Scores
Scoreformer: A Surrogate Model For Large-Scale Prediction of Docking Scores
Álvaro Ciudad
Adrián Morales-Pastor
Laura Malo
Isaac Filella-Merce
Víctor Guallar
Alexis Molina
40
0
0
13 Jun 2024
Pareto Optimization to Accelerate Multi-Objective Virtual Screening
Pareto Optimization to Accelerate Multi-Objective Virtual Screening
Jenna C. Fromer
David E. Graff
Connor W. Coley
15
7
0
16 Oct 2023
Large-scale Pretraining Improves Sample Efficiency of Active Learning
  based Molecule Virtual Screening
Large-scale Pretraining Improves Sample Efficiency of Active Learning based Molecule Virtual Screening
Zhonglin Cao
Simone Sciabola
Ye Wang
17
1
0
20 Sep 2023
GAUCHE: A Library for Gaussian Processes in Chemistry
GAUCHE: A Library for Gaussian Processes in Chemistry
Ryan-Rhys Griffiths
Leo Klarner
Henry B. Moss
Aditya Ravuri
Sang T. Truong
...
A. Lee
Bingqing Cheng
Alán Aspuru-Guzik
P. Schwaller
Jian Tang
GP
9
40
0
06 Dec 2022
Calibration and generalizability of probabilistic models on low-data
  chemical datasets with DIONYSUS
Calibration and generalizability of probabilistic models on low-data chemical datasets with DIONYSUS
Gary Tom
Riley J. Hickman
Aniket N. Zinzuwadia
A. Mohajeri
Benjamín Sánchez-Lengeling
A. Aspuru‐Guzik
6
16
0
03 Dec 2022
DOCKSTRING: easy molecular docking yields better benchmarks for ligand
  design
DOCKSTRING: easy molecular docking yields better benchmarks for ligand design
Miguel García-Ortegón
G. Simm
Austin Tripp
José Miguel Hernández-Lobato
A. Bender
S. Bacallado
24
73
0
29 Oct 2021
Accelerating high-throughput virtual screening through molecular
  pool-based active learning
Accelerating high-throughput virtual screening through molecular pool-based active learning
David E. Graff
E. Shakhnovich
Connor W. Coley
67
139
0
13 Dec 2020
Bayesian Multi-Scale Optimistic Optimization
Bayesian Multi-Scale Optimistic Optimization
Ziyun Wang
B. Shakibi
L. Jin
Nando de Freitas
68
95
0
27 Feb 2014
1